IMPERIAL

Laser Wakefield Accelerators: Tools for Time-Resolved X-Ray Imaging and Spectroscopy

Stuart Mangles 23/04/2024

Outline

- **1** Intro to laser wakefield accelerators
- **2** Basic concepts of X-ray generation
- **3** Synchrotron radiation from Laser Wakefield Accelerators
- 4 Applications of X-rays from Laser Wakefield Accelerators

Diamond: an X-ray source (3 GeV electron beam)

GEMINI: 250 TW laser ~2 GeV electron beam + X-ray source

X-rays are amazing tools for science

Myoglobin structure calculated using x-ray crystallography, wikipedia.org

High resolution phase contrast x-ray imaging of a rat's heart F. Pfeiffer. C. David, www.cimst.ethz.ch

Bright x-rays produced by particle accelerators are used a tool by a huge variety of scientists

- X-ray diffraction used to work out structures of proteins vital for discovery of new drugs, magnetic materials ...
- Advanced x-ray imaging techniques to improve medical diagnosis
- X-ray tools used in palaeontology and archaeology

Laser wakefield accelerators

Laser wakefields are compact laser-plasma accelerators

- Plasma wave driven by very intense laser pulse travelling through a plasma
 - Plasma waves can support fields > 100 GV m⁻¹
 - conventional accelerators are limited to <100 MV m⁻¹

Laser wakefield accelerators

What sort of electron beams can we get?

Electron beam properties:

- gigaelectronvolt energy
- femtosecond duration
- Image shows selection of electron spectra from Gemini
 - Black: measured spectrum
 - Red: predictions of spectrum predicted by neural net based on other diagnostics of laser + plasma
 - Blue: average spectrum

Basic Concepts of X-ray Generation

X-ray Generation Mechanisms

There are many mechanisms for X-ray generation

- Bremsstrahlung
- Characteristic radiation (K-alpha etc)
- Synchrotron Radiation
- Thomson scattering
- Free Electron Lasers

Image: Jon Lomberg/Gemini Observatory.

X-ray Generation Mechanisms

There are many mechanisms for X-ray generation

- Bremsstrahlung
- Characteristic radiation (K-alpha etc)
- Synchrotron Radiation
- Thomson scattering
- Free Electron Lasers

Image: Jon Lomberg/Gemini Observatory.

X-ray generation with high-energy electron beams

For high-energy electron beams ($E \gg m_{ m e} c^2$)

- Radiated power given by relativistic Larmor formula
- High energy particles radiate *a lot*
- High energy particles have |β| → 1: radiation is generated by bending the beam
- For constant circular motion (radius R) the expression is simpler

$$P = \frac{q^2}{6\pi\epsilon_0 m^2 c^3} \gamma^6 \left[(\dot{\underline{\beta}})^2 - (\underline{\beta} \times \dot{\underline{\beta}})^2 \right]$$

Power radiated by moving charge (Jackson chapter 14)

X-ray generation with high-energy electron beams

Radiation from *low-energy* electrons is emitted perpendicular to beam direction

Radiation from *high-energy* electrons is "beamed" into narrow cone

 beam of X-rays pointing along the electron beam trajectory

Radiation from particle in circular motion

- Observer sees radiation flick on and off as beam sweeps past
- Duration of "flash" determined by radius of circle, R and the electron Lorentz factor, γ
- Spectral bandwidth of the radiation found from time bandwidth product
 - This determines the critical photon energy, E

for high-energy X-rays we need high γ and small R

Synchrotron Radiation Spectrum

Critical energy, E_c is a single parameter that defines shape of Synchrotron radiation

Radiation "on-axis"

$$\frac{\mathrm{d}^2 I}{\mathrm{d}E\mathrm{d}\Omega} = \frac{3e^2}{16\pi^3\epsilon_0 c}\gamma^2 \left(\frac{E}{E_{\rm c}}\right)^2 K_{2/3}^2 \left(\frac{E}{2E_{\rm c}}\right)$$
$$E_c = \frac{3}{2}\hbar c\gamma^3/R$$

13

Wigglers and Undulators radiation

To get more X-rays add more bends

Define K parameter:

$$K = \gamma k_0 r_0$$

Wiggler: if $K \gg 1$: spectrum is still synchrotron-like

Wigglers and Undulators radiation

To get more X-rays add more bends

Define K parameter:

$$K = \gamma k_0 r_0$$

Undulator: if $K \ll 1$: spectrum is monochromatic

Synchrotron radiation from laser wakefield accelerators

Radiation using conventional undulator

Fuchs Nature Phys 2009 Schlenvoigt Nature Phys 2008

LWFA producing ≈200 MeV beams used in conventional undulator

- few centimetre period
- soft X-rays (< 100 eV)

Need shorter period to reach keV X-rays But these are the route to LWFA FELs

2021/22 was the year of the plasma FEL

2.7 nm FEL at SIOM: Wang et al Nature 595, 516 (2021)
0.8 μm FEL at Frascati: Pompili et al Nature 606, 659 (2022)
270 nm seeded FEL at HZDR: Labat et al Nature Photonics (2022)

But can we use LWFA to reach keV X-rays?

Imperial College London

Laser Wakefield as accelerator and wiggler

Strong transverse fields inside bubble make electrons oscillate while being accelerated

• "betatron oscillations"

• wavelength of oscillations can be very short compared to conventional wigglers

- for n_e = 10^{19} cm^{-3} and 200 MeV electrons this is 300 μm

$$\omega_{\beta} = \frac{\omega_{\rm p}}{\sqrt{2\gamma}} \qquad \lambda_{\beta} = \sqrt{2\gamma} \, c/\omega_{\rm p}$$

Energy of X-rays from a Laser Wakefield Accelerator

Energy of X-rays in synchrotron:

$$E_c = \frac{3}{2}\hbar c\gamma^3/R$$

We can rewrite R in terms of the wiggler wavelength and amplitude

$$Rpprox 1/(k_eta^2 r_eta) \qquad \omega_eta=rac{\omega_{
m p}}{\sqrt{2\gamma}}$$

Result is expression for critical energy for x-rays from a LWFA:

$$E_c = \frac{3}{4}\hbar\gamma^2\omega_p^2 r_\beta/c$$

Typical values for a laser wakefield accelerator:

•
$$r_{\beta} \simeq 1 \ \mu m$$
, $\gamma \simeq 2000$, $n_e \simeq 10^{18} \ cm^{-3} \rightarrow E_c \simeq 10s \ keV$

X-rays from a laser wakefield accelerator

First observed by Rousse et al. at LOA (PRL 2004)

- 30 TW laser
- broad band $\simeq 100$ MeV electrons
- X-ray radiation at $\simeq 1 \text{ keV}$

Imperial College London

X-ray energy and brightness scale with electron beam energy

Experiments have rapidly increased X-ray flux and photon energy

Applications of X-rays from Laser Wakefield Accelerators

What properties do X-rays from LWFA have that we can exploit?

Co-location of electron / X-ray source with other high-power lasers

- ns pulses for shock compression
- fs and ps pulses to produce hot / warm dense matter

Natural synchronization of electron / X-ray source with these lasers

• fs synchronization routinely achieved

Unique properties of LWFA source

- X-ray source is small (≈1 µm)
- X-rays are both broadband and ultra-fast (≈10s fs)

Small Source size good for imaging

high definition, high resolution imaging using phase contrast or absorption contrast

- possible because of the very small source size
- images possible in a single shot (30 fs exposure)

Optica Webina

Kneip Applied Physics Letters 2011

Fourmaux Optics Letters 2011

X-rays now stable enough to perform 3D tomography

Wenz et al, Nature Comms 2015

Cole et al, Sci. Rep. 2015

- Tomography requires acquisition of 100s images per sample
- \bullet LWFA sources already competitive with state of the μCT
- High rep rate LWFA an exciting prospect for rapid tomography scans

Imaging rapidly evolving phenomena: laser driven shocks on Gemini

See J Wood Sci Rep 2018

Imperial College London

Optica Webinar

²⁷ J Wood PhD Thesis <u>https://doi.org/10.25560/58282</u>

23/04/2024

An ultrafast XANES / EXAFS diagnostic based on LWFA?

A Practical Introduction to Multiple Scattering Theory, Bruce Ravel, 2005

X-ray Absorption Spectroscopy is a powerful technique that provides a wealth of data about the properties of condensed matter

- X-ray is absorbed, produces photo-electron
- If Debroglie wavelength of photo-electron larger than spacing between absorbing atom and nearest neighbours, interference leads to peaks and troughs in absorption

Unique combination of broad spectrum and fs duration makes LWFAs ideal

Imperial College London

Optica Webinar

X-ray absorption spectroscopy using LWFA

Mo PRE 2017

- 80 TW laser pulse
- 150 shots per spectrum

Albert IPAC 2018

- 20 TW laser pulse
- 300 shots per spectrum

Smid Rev Sci Inst 2017

- 20 TW laser
- 150 shots per spectrum

X-ray absorption spectroscopy using LWFA

Mahieu Nat Comms 2018

Optica Webinar

• 50 TW laser

• 50 shots per spectrum

Kettle PRL 2019

- 250 TW laser pulse
- Single shot XANES

Single shot X-ray absorption spectroscopy

Kettle 2023 arXiv:2305.10123

- New geometry to improve signal:noise
- Stable x-rays (despite electron beam fluctuations)

Kettle 2023 arXiv:2305.10123

- 250 TW laser pulse
- Single shot XANES *and* EXAFS

Near edge

information about the electrons (XANES)
electron distribution function, density of states, electron temperature

Next to the edge

- information about the ions
- Ionic structure, ion temperature

Next to the edge

- information about the ions
- Ionic structure, ion temperature
- Here we show measurement of position of first four nearest neighbours (coordination shells)

• Single shot accuracy of 1.5% (shells 1) and 5% (shells 2-4)

What's next? Pump Probe Experiments

Pump-probe experiment to measure rate of heat flow between ions in warm dense matter

- warm dense matter created by picosecond x-ray heating (picosecond laser drive)
- investigate coupling between ions and electrons
 - Ion density fluctuations phonons
 - Ion charge fluctuations (see Baggott PRL 2021)

What's next? Pump Probe Experiments

Pump-probe experiment to measure rate of ionization in hot dense plasma

- Hot dense plasma created by fast electron heating (femtosecond laser drive)
 - Measure change in opacity on route to equilibrium: testing NLTE codes
 - Time-resolved measurements of plasma opacity in conditions relevant to solar interior

IMPERIAL

Summary:

- 1 Intro to laser wakefield accelerators GeV electron beams
 - femtosecond beam
- **2** Basic concepts of X-ray generation

synchrotron radiation wigglers, undulators and FELs

3 Synchrotron radiation from Laser Wakefield Accelerators

betatron oscillations

femtosecond, broadband x-rays

4 Applications of X-rays from Laser Wakefield Accelerators

ultrafast imaging ultrafast XAS

IMPERIAL

Thank you

LWFA: Tools for Time-Resolved X-Ray Imaging and Spectroscopy 23/04/2024

stuart.mangles@imperial.ac.uk