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TFBGs are the subject of several hundreds of publications!
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Abstract Optical fiber gratings have developed into a mature
technology with a wide range of applications in various areas, in-
cluding physical sensing for temperature, strain, acoustic waves
and pressure. All of these applications rely on the perturbation
of the period or refractive index of a grating inscribed in the
fiber core as a transducing mechanism between a quantity to be
measured and the optical spectral response of the fiber grating.
This paper presents a relatively recent variant of the fiber grating
concept, whereby a small tilt of the grating fringes causes cou-
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pling of the optical power from the core mode into a multitude of
cladding modes, each with its own wavevector and mode field
shape. The main consequence of doing so is that the differential
response of the modes can then be used to multiply the sensing

modalities available for a single fiber grating and also to increase
the sensor resolution by taking advantage of the large amount

quality factor of 10°, and they can be observed in reflection or

of data available. In particular, the
and power source fluctuation noise inherent in all fiber grating

A thorough review of experimental and theoretical
results will show that tilted fiber Bragg gratings can be used for

high y, surface plasmon resonance appli-

designs can be by ing all the
spectral measurements to the wavelength and power level of  cations, and multiparameter physical sensing (strain, vibration,
the core mode back-reflection. The mode have a . and
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Rationale of our work

1 Transpose the Kretschmann prism into an optical fiber counterpart

1 Main advantages:

- Weak intrusion = In situ measurement possible
- Remote interrogation in very small volumes and real-time measurement

(1 We use near-infrared fiber Bragg gratings as spectral combs

(] Our probes are able to excite simultaneously but distinctively all
optical fiber cladding modes



Research context

1 Towards in vivo cancer diagnosis in areas of critical access

1 Focus on clinically-relevant biomarkers for lung and breast cancers:

Cytokeratins (CK)
mammaglobins (MAM) and human-epidermal growth factor receptors-2 (HER2)

] Collaborations with Prof. J. Albert (Carleton U.) and T. Guo (Jinan U.)

Our developments to achieve this:

1. Optical fibre with tilted Bragg grating inside
2. Bare surface or thin gold overlay

3. Bioreceptors grafted on the surface

4. In vitro assays




Outline

SENSOR

] Basics on plasmonic sensors

J Gratings production

] Gold-coating process

1 Biofunctionalization process

] Bioassays




KRETSCHMANN prism configuration:
Light coupling by exploitation of total internal reflections

detector

—

reflectance

Surface plasmons = Collective
oscillation of electrons at the
inferface between a dielectric

Au . .
S o 0 and a thin metal film
\ ¢ 0504 angle
Analyte

Evanescent wave characteristics: Configuration used to measure:
- Near-field standing wave - Thickness changes
- Extends about 1/2 A - Density fluctuation
- Decays exponentially - Molecular adsorption

We transpose this to single-mode optical fibers




Our sensors are manufactured into telecommunication-
grade optical fibers

Optical fiber: three concentric cylinders
Core (5 - 8 um)
Cladding (125 pm)

Polymer jacket (250 pm)

- Sketch not insgeal® not in scale -

Core: SiO, + GeO, - Cladding: SiO,
Neore > Nelag 2 Light guidance by total internal reflections at the core-cladding interface (Cf. Snell law)
Single mode operation



FIBRE BRAGG GRATINGS (FBGs)
The core is locally modified by photo-writing

1 Periodic and permanent core refractive index modulation obtained by lateral illumination
(interference of UV light)

1 Index change possible thanks to the optical fiber photosensitivity
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We mainly rely on tilted fiber Bragg gratings (TFBGs)
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Eccentric gratings (EFBGs) can also be used
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Cylindrical symmetry broken - SPR generation in gold-coated gratings



We have several options to produce such gratings

TFBGs

(d Phase mask tilted in the plane perpendicular to
the incident laser beam
- 193 nm (excimer laser — NORIA system)

- 244 nm (frequency-doubled Argon laser)
- 266, 400 or 800 nm (fs pulses laser)

L~1cm, O~ [6°—10°] to cover Rl of liquids

EFBGs
[ Point-by-point with fs pulses laser




Focus on the NORIA Facility




For bare gratings, the cut-off mode is used to track slight
surrounding refractive index changes (1/2)

Change of the surrounding refractive index
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For bare gratings, the cut-off mode is used to track slight
surrounding refractive index changes (2/2)
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Linear sensitivity: ~20 nm/RIU
Temperature self-compensation thanks to the core mode resonance
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Temperature sensitivity

The cladding modes resonances translate almost exactly with the Bragg peak

as the temperature changes
-5

10 AARANMARARA
: QA
g -15 t ‘ ”' ' I { l
% -20
= —25C
25 — 100C (shifted to match Bragg wavelength
-301 520 1 5I25 1 5I30 1 5I35 1 5140 1 5I45 1 5I50 1555

Wavelength (nm)




Axial strain sensitivity (1/2)

The cladding modes resonances do not translate exactly with the Bragg peak
as the axial strain is applied
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Axial strain sensitivity (2/2)

The shift between the Bragg wavelength and a cladding mode resonance increases
with the axial strain and the mode order
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Gold is deposited by sputtering

d Sputtering
= Use of a sputter coater (Leica EM SCD500) with 99.99 % purity gold target

= Gold thickness measured by a built-in Quartz microbalance

(d Thermal annealing to improve adhesion

- Good uniformity of the gold sheath




For clean SPR generation in liquids,
the optimal gold thickness lies between 30 and 50 nm

Cladding modes
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The SPR mode shifts in wavelength and in amplitude in
response to refractive index changes (1/2)

Change of the surrounding refractive index
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The SPR mode shifts in wavelength and in amplitude in
response to refractive index changes (2/2)
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[ Linear evolution: ~50 nm/RIU for single-peak tracking

1 Possibility to tune the SPR wavelength by playing on the grating period
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The demodulation from the envelopes of the spectrum
vields the ultimate sensitivity
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1 Can be readily implemented in a real-time signal analysis
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The functionalization on gold is a 2-step process

BIORECEPTORS

Antibodies

~15 nm
125 kDa

Limited to physiologic conditions (pH, T)
Immunogenic targets

Produced in vivo / cell cultures
Low amount, expensive
Batch-to-batch variations

High Affinity, High Specificity
Large panel commercially available

aptus (Latin): to fit

Apta MErS | meros (Greek): part

« Nucleic Acid Antibodies »

~2 nm
5-25 kDa

More stable (pH, T), longer shelf life
Immunogenic and non-immunogenic targets

Produced in vitro and easy to modify (5’, 3’)
Large amount, expensive
Improved batch-to-batch consistency

High Affinity, High Specificity
Not yet widely available



The functionalization on gold is a 2-step process

Thiolated-Aptamers
1. Reduction process (TCEP)

> HS 05
¢ _ o N 2
. o P OH R S_R_MO0 T ¢ I
Aptamers are linked together o S 0 P OH +2R-SH " SH
Through disulfide bonds OH © A
TCEP o

2. Immobilization on gold-coated TFBGs

Immobilized aptamer £ S-Au 1 hour at room temperature in solution

M. Lobry et al., Biomed. Opt. Express 11, 4862 (2020)
M. Loyez et al., ACS Sensors 5, 454 (2020)



Examples of in vitro bioassays

Mammaglobin-protein detection Human Epidermal Receptor 2
on cancer cells (Breast Cancer Biomarker)

MAMA2-apt Gold nanoparticle (¥R \
alme ' ) 8

[N s

Cancer Cell HER2 antibodies

® w
i
N HER2 proteins

MAMA2 Aptamer
@ HER2 Aptamers
& L ¢




Mammaglobin-protein detection on cancer cells
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Specific detection of targeted cancer cells



HER2 detection & Signal amplification using antibodies
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Wavelength (nm)

Amplitude (dB)

Example of automatic read-out

TFBG spectra

a ] """"".l“""-‘-.-‘....»....-‘ Ottt
810 TTTTTVTTTTTTY
: QOTYTTTYR
S
S -20
£
[}
E b
1540 1560 1580 1600
Wavelength (nm)
Wavelength shift as a function of time
0.05 o
-- max
0.00 - ¢ .
_0‘05 A T T T T T
-0.04 -0.02 0.00 0.02 0.04
Time (min)
Amplitude shift as a function of time
0.05 | e
-~ max
0.00 * e min
=0.05 - T T T T T
-0.04 -0.02 0.00 0.02 0.04
Time (min)




The spectrum of a TFBG is very rich and its read-out has
been the subject of numerous recent works!

- Enhance the performances
- Provide real-time and cost-effective solutions

3046 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 40, NO. 9, MAY 1, 2022

Machine Learning Approach to Data Processing of
TFBG-Assisted SPR Sensors
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Our sensors are also developed for in vivo diagnosis

J Dedicated packaging

v' Biodegradable polymer valve operational in a catheter
v’ Stainless steel blocks to hold the fiber sensors

1 Discrimination between healthy and tumorous tissues \
M. Loyez et al., Biosens. Bioelectron. 131, 104 (2019)
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Towards /in vivo experiments...
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=  Biosensor inserted into the operating channel
= Ljve operation in a pig
= Record of an SPR signature within a living body




In conclusion

] Tilted fiber Bragg gratings are multiparametric sensors
= Suited to measure temperature and strain or compensate them
" Low cost (pigtailed standard single mode fiber, any wavelength)
= Robust system with ample evidence of repeatability and high sensitivity

 In biosensing

= Low loss system to probe molecular interactions or other reactions
= Limit of detection suited for target applications in cancer diagnosis

European Research Council



