Color Inconstancy, Chromatic Adaptation, and Scales of Color Appearance Mark D. Fairchild

"A tree that is unbending is easily broken"
-LAO TZU

Today we're going to look at things differently...

Color Inconstancy

Why not color constancy?

Term: "Constancy" implies perfection. There is no "constancy".

Usage: Experimentation assuming "perfect" "constancy". Inconstancy is what happens.

Color Inconstancy - Nearly 100\% of the time.
Color Constancy - Almost never.

Why not color constancy?

... in everyday life we are accustomed to thinking of most colors as not changing at all. This is in large part due to the tendency to remember colors rather than to look at them closely.

```
-Evans (1943)
```

All objects that are already known to us from experience, or that we regard as familiar by their color, we see through the spectacles of memory color.
-Hering (1920)

Why not color constancy?

- Not Mathematically Possible (Metamerism)
- Not Observed (Degree of Color Inconstancy) ${ }^{\text {** }}$
- Not Useful (Perception of Illumination Color, Weather, Time of Day, etc.)
- Colorimetry Includes Illuminants ...
- Chromatic Adaptation
- Poor Color Memory

Corresponding Colors

Sensory \& Cognitive Chromatic Adaptation

The processes by means of which the observer adapts to the illuminant or discounts most of the effect of a nondaylight illuminant are complicated; they are known to be partly retinal and partly cortical. -Judd (1940)

THEORY ...

THEORY ...

Many CMFs, Identical CATs

THEORY ...

Identical CMFs, Many CATs

THEORY ...

Many CMFs, Many CATs

The processes by means of which the observer adapts to the illuminant or discounts most of the effect of a nondaylight illuminant are complicated; they are known to be partly retinal and partly cortical. -Judd (1940)

Very Old Degree Of Adaptation Data

Figure 4-2. Results of experiment 5 for the average of 3 observers. Filled symbols represent achromatic-appearing stimuli under adaptation to various adapting chromaticities represented by the filled symbols. Standard errors. of the mean estimates are approximately the size of the plotting symbols.

Nearly So Old Discounting Data

Screen Capture from K. Gegenfurtner's Nov. Webinar

vK20: 15000K Reference

$$
\left[\begin{array}{c}
L_{a} \\
M_{a} \\
S_{a}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\left(D_{n} L_{n}+D_{r} L_{r}+D_{p} L_{p}\right)} & 0 & 0 \\
0 & \frac{1}{\left(D_{n} M_{n}+D_{r} M_{r}+D_{p} M_{p}\right)} & 0 \\
0 & 0 & \frac{1}{\left(D_{n} S_{n}+D_{r} S_{r}+D_{p} S_{p}\right)}
\end{array}\right]\left[\begin{array}{c}
L \\
M \\
S
\end{array}\right]
$$

vK20: 15000K Reference

70\% Adapted Dn,Dr,Dp (.7,.3,0)

Geometric Mean: WGM

$$
L^{\prime} M^{\prime} S^{\prime}=\sqrt{L_{n} M_{n} S_{n} \times L_{r} M_{r} S_{r}}
$$

Geometric Mean: WGM

$$
\left[\begin{array}{c}
L_{a} \\
M_{a} \\
S_{a}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{L_{n}^{D} \times L_{r}^{1-D}} & 0 & 0 \\
0 & \frac{1}{M_{n}^{D} \times M_{r}^{1-D}} & 0 \\
0 & 0 & \frac{1}{S_{n}^{D} \times S_{r}^{1-D}}
\end{array}\right]\left[\begin{array}{c}
L \\
M \\
S
\end{array}\right]
$$

Color Space

Color Order

The Story of the "CIE Color Order System"

Munsell

Value: Luminance Based (HK Ignored) Not True Lightness

Chroma: True Chroma - Not Saturation
Hue: Differences - Not Appearance

NCS - Natural Color System

Blackness: Brilliance (HK Included) — True Lightness
Chromaticness: Similar to Saturation
Hue: Opponent

DIN Color System

Darkness: Brilliance (HK Included) — True Lightness Saturation: Constant Chromaticity

Hue: Munsell Like

Dualism of 4 vs 5 Hues

Received: 19 June 2018 Revised and accepted: 6 July 2018

DOI: $10.1002 /$ col. 22261

Wiley

RESEARCHARTICLE

$$
\begin{aligned}
& \text { Munsell Centennial Color Symposium } \\
& \text { Bridging Science, Art, \& Industry } \\
& \text { June 10-15, } 2018 \\
& \text { Massachusetts College of Art and Design } \\
& \text { Boston, MA }
\end{aligned}
$$

Program of Color Science/Munsell Color Science Laboratory, Rochester Institute of Technology, Integrated Sciences Academy, Rochester, New York

Correspondence
Mark Fairchild, Rochester Institute of Technology, Integrated Sciences Academy, Program of Color Science/Munsell Color Science Laboratory,
Rochester, NY 14623, USA.
Email: mark.fairchild@rit.edu

Abstract

This note examines the different concepts of encoding hue perception based on four unique hues (like NCS) or five principal hues (like Munsell). Various sources of psychophysical and neurophysiological information on hue perception are reviewed in this context and the essential conclusion that is reached suggests there are two types of hue perceptions being quantified. Hue discrimination is best quantified on scales based on five, equally spaced, principal hues while hue appearance is best quantified using a system based on four unique hues as cardinal axes. Much more remains to be learned.

KEYWORDS

Munsell's 5 Principal Hues

Skelton et al., PNAS (2017) Hue Categorization

Infants: R Y G B \& P
Link to Munsell?
JNDs vs. Appearance

Research Needed

Principal/Unique Hues

Munsell :
5 Principal Hues :
Based on Thresholds/Differences

NCS:
4 Unique Hues:
Based on Appearance

Going Further

Stevens: "To Honor Fechner and Repeal his Law"

Gustav Fechner

Adding JNDs Should Make and Appearance Scale
Thresholds : $\Delta \mathrm{I} / \mathrm{I}=\mathrm{K}$
Therefore Scales are Logarithmic

Ramifications for Color "Spaces"
Thresholds vs. Scales
Differences/Tolerances vs. Appearance
Disparate Metric Dimensions

Stanley Stevens (and Psychophysics Thereafter ...)

Scales are not Logarithmic
Power Law and Thresholds don’t Add to Appearance Scales

Are Color Spaces Logical ??

1. Maybe for Thresholds
2. Probably Not for Suprathreshold Differences

3. Almost Definitely Not for Appearance Scales

Cannot be the Same Space (If you must have some)

"We know dis!"

Organizing Dimensions

L*C*h
Differences / Munsell

Hue Quadrature, Brilliance, Saturation Appearance / NCS / DIN

Color Appearance Dimensions

Dimensions of Color Appearance

Hue
Brightness / Lightness
Colorfulness / Saturation

Chroma

Luxo Double Checker

Dimensions of Color Appearance

Chroma

Do we need all 6 of these dimensions to describe color appearance?
No!

But we need at least 5 of them ... And if you know the right 4, you can easily infer the 5th.

Model Framework

Defining Scales of Appearance

Rather than Attempting to Make a 3D Color Appearance Space (Doomed to Failure?)
Create Four Robust, Individual, Scales of Appearance
Brightness, Brilliance (HDR/True Lightness), Saturation, Hue (Incremental \& Quadrature)
Both Colorfulness and Chroma Are Derivative

Work in Progress

Brilliance: Brightness and Lightness

- Evans' G0
- Lightness is Scaled Relative to G0, Not Diffuse White
- Nonlinear with Luminance
- Lightness (0-100), Brightness (Scale with Terminal Brightness Function)

Brilliance, G0

Saturation

- Excitation Purity in Fundamental Chromaticities
- Supported By Psychophysics
- Uncertainty Very Large

Hue

- Individual Cone Fundamentals: LMS
- Simple Linear Opponent Transformation
- Individual Unique Hues: RGYB
- Two Hue Scales: FHS ${ }_{h}$, FHSH

"Space" - an Afterthought

Assess wine and plot three dimensions of perceived acidity, perceived floral aroma, and hue as a "space".

Does that really have any meaning as three orthogonal dimensions? (Multi-modal)

Why do we think that Hue, Brilliance, and Saturation should make a 3D metric space???

Non Euclidean
Convenience for Visualization
Not an Internal Representation

Optimal Colors in CIELAB
These have an ecological meaning; CIELAB probably does not.

Conclusions

Color Appearance: Inconstancy, Adaptation, Scales

Scales Need Not Be Constrained By Spaces

I left the woods for as good a reason as I went there. Perhaps it seemed to me that I had several more lives to live, and could not spare any more time for that one.
-Henry David Thoreau

Thank You ...

Questions / Comments / Suggestions ...

mark.fairchild@rit.edu

