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Optica Technical Group
Twitter Giveaway

- Join us for two #OpticaTechGroup webinars
between February and March for your chance to
win Optica merchandise!

- Follow us on Twitter @OpticaTechGroup and scan
the QR code to learn more about the contest
guidelines.

- We will announce our two winners 01 April 2023.
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A Quick
Zoom Tutorial

OPTICA rumiicrnr

dvancing Optics and Photonics Worldwide
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—Submit a question by clicking
On “Q&,A,,

— Like a question that’s been
submitted?
Click the “thumbs up” icon to vote
for it.

— Share your feedback in the survey.
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About Our Technical Group

Our technical group deals with aspects of optical transmission ranging from
chip-to-chip to ultra-short haul to long haul links. It deals with aspects of
optical networking, coding and decoding of information onto photons, optical
signal processing and other transmission-related aspects.

Our mission is to connect the 3800+ members of our community through
technical events, webinars, networking events, and social media.

Our past activities have included:
* Research Lab Stories: Special Event at OFC 2022, featuring Dr Mable Fok, Prof Darko Zibar, Prof
Liam Barry, Prof Deepa Venkitesh
 Copackaged Silicon Photonics based Optical Transceivers for high-speed data-center
interconnects by Dr Jahnavi Sharma
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Upcoming Events

O P I ICA Optical Communications N f
Advancing Optics and Photonics Worldwide 2 lI'-\\_\\ ;
‘\\\ >
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SPECIAL EVENT AT OFC

Poster Pitch Competition

07 March 2023 | 11:00 — 12:00 PST (UTC-08:00)

Q2 Tutorial : Coherent Optical Communication

Q2 Webinar : Quantum Communication

4

SN TSNS, TSNS, PSS, PSS, PSS, PSS, PSS, ST OSSN, IS SIS, PSS, PSS



Connect with our Technical Group

Join our online community to stay up to date on our group’s activities.
You also can share your ideas for technical group events or let us know if
you’re interested in presenting your research.

Ways to connect with us:
* Ourwebsite at www.optica.org/PC
« Our LinkedIn group www.linkedin.com/groups/12607066/
* Our Facebook group www.facebook.com/groups/OpticaOpticalCommunications
* Emailus atTGactivities@optica.org
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Today’s Speaker

Dr. Xing Ouyang

Tyndall National Institute, Ireland

Xing Ouyang is a Research Fellow at the Tyndall National Institute and University
College Cork, Ireland. Xing completed his Ph.D. thesis in 2017 from the Photonic
Systems Group of the SFI Irish Photonics Integration Centre led by Prof. Paul
Townsend in Ireland.

His current research interest includes information theory, advanced modulation
formats such as OCDM and OFDM and DSP techniques for communication and radar,
high speed wireless and optical systems. His work on the orthogonal chirp division
multiplexing waveform has helped him to secure a start-up grant for the
“ChirpComm” initiative. Xing has recently secured a prestigious Starting and
Consolidator Laureate Award from the Irish Research Council to further advance his
ChirpComm technology.
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» Why, What & How %%%

» A Brief History i i " aeessans

» Waveform Modulation Technologies

O Orthogonal Chirp-Division Multiplexing (OCDM)
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A Brief Outlook for Future Connected World
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Future Optical and Wireless Access Networks < Tyndall

Core Network  Backhaul Fronthaul Air Interface Diverse Use Cases in 6G
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1 4G/LTE D-RAN =2 /{ Starlink/ViaSat/Telesat | 802.11p/DSRC/C-V2X
Diverse operating Wireless Technologies

scenarios & impairments

Looking for A Flexible and Versatile Signal Modulation Technology as the Unified Air Interface
enabling the so-called Ubiquitous Connectivity for Everyone, Everything, Anytime, and Anywhere

B. Farhang-Boroujeny, et al., “OFDM Inspired Waveforms for 5G,” IEEE Commun. Surveys & Tutorials, 18(4): 2474-2492, 2016.
X. Zhang, et al., “On the Waveform for 5G,” IEEE Commun. Mag., 54(11): 74-80, 2016.

Dang, et al. “What should 6G be?” Nat Electron 3, 20-29 (2020). 5
M. A. Uusitalo et al., “Hexa-X The European 6G flagship project,” 2021 EuCNC/6G Summit, Porto, Portugal, 2021, pp. 580-585.



How to Modulate Information onto Waveform (1/3)§TXQQ§JJ

D HiStorica"v cee International Morse Code

1. The length of a dot is one unit.

2. A dash is three units.

3. The space between parts of the same |etter is one unit.
4. The space between letters is three units,

5. The space between words is seven units.
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Samuel Morse, US Patent: US1647A, 1840.  Courtesy of National Museum of American
History from Western Union Corporation
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How to Modulate Information onto Waveform (2/3)€ Tyndal

O Beginning of Modern Communications ...

Certain Topics in Telegraph Transmission Theory
BY H. NYQUIST:

Member, A. I. E. E.

S, is.— The most obvi method for determining the distor-
tion of telegraph signals is to calculate the transients of the telegraph
system.  This method has been ftreated by various wrilters, and solu-
tions arc available for telegraph lines with simple terminal conditions.
It is well known that the extension of the same methods to more
complicated terminal conditions, which represent the usual terminal
apparalus, leads lo great difficullies.

The present paper altacks the same problem from the alternative
standpoint of the steady-slale characleristics of the system. This
method has the advanlage over the method of transients thot the
complication of the circuit which resulls from the use of terminal

apparalus does not complicate the caleulations materially. This
method of treatment necessitales expressing the criteria of distortion-
less transmissinn in terms of the steady-siate characleristics.
Accordingly, a considerable portion of the paper deseribes and
tllustrales a method for making this translation.

A discussion is given of the minimum frequency range required for
transmission al a given speed of signaling. In the case of carrier
telegraphy, this discussion includes a comparison of single-sideband
and double-sideband transmission. A number of incidental topics

s also discussed.
ok ox % %

Harry Nyquist, Trans. of the AIEE 47(2): 617-644, 1928.

C = Wlog

The Bell System Technical Journal

Vol, XXVII

July, 1948 No. 3

A Mathematical Theory of Communication

By C. E. SHANNON

Claude E. Shannon, Bell System Technical Journal 27(4): 623-656, 1948.
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Fic. 3—IpeaL SHAPE FacTORs
In this figure, the criterion of distortionless transmission is that the width
or duration of each signal element at the mean-value point should be
uddistorted
a and c represent real shape factors which produce a non-distorting
wave,—b and d shape factors which may be added without producing
distortion, the former representing an imaginary and the latter a real value

Theorem 13: Let f(!) contain no frequencies over W.
Then

_ % . sina(2IVt — n)
0= XX oy

s (3)

where
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O Block Diagram of a Communication System
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Understanding the Channel

(J Channel Model
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Evolution of Wireless Systems éTyndaII
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Ericsson Mobility Report 2022: https://www.ericsson.com/en/reports-and-papers/mobility-report
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Jeff Hecht, “City of Light: The Story of Fiber Optics”, Oxford University Press, 1999
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Digital Modulation Technologies < Tyndal

O Fundamental Dimensions available for encoding information

» Time
» Frequency
» Space
L Time < Frequenc
» Polarization “ y
» Code Digital Signal Modulation
Single Carrier Multi-Carrier
(Time-Domain Multiplexing) (Frequcny-Domain Multiplexing)
Non Nyquist TDM Non Nyquist FDM
. |
. Time Frequency
Nyquist TDM (OTDM) Nyquist FDM (OFDM)
Time Frequency
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Outline

O Orthogonal Chirp-Division Multiplexing (OCDM)
» Chirps are Everywhere
» From Fresnel Diffraction to (Discrete) Fresnel Transform
» OCDM

Traditional CSS




Chirps are Everywhere
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Chirps for Radar and Communications

THE BELL SYSTEM
TECHNICAL JOURNAL

VOLUME XXXIX JurLy 1960 NUMBER 4

Copyright 1960, American Telephons and Telegraph Company

The Theory and Design of Chirp Radars

By J. R. KLAUDER, A. C. PRICE,
S. DARLINGTON and W. J. ALBERSHEIM

(Manuscript received April 5, 1960)

R. Klauder, J. R., et al. “The theory and design of chirp radars.”

Bell System Technical Journal, 39(4): 745-808, 1960.

THE BELL SYSTEM
TECHNICAL JOURNAL

VOLUME XLIII JANUARY 1964 NUMBER 1, PART 2

Demodulation of Wideband, Low-Power
FM Signals*

By SIDNEY DARLINGTON
(Manuseript received October 3, 1963)

Sidney Darlington, “Demodulation of wideband low-power FM signals,”

Bell System Technical Journal, 43(1p2): 339-374, (1964).
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Fig. 5 — Frequency conversion,
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O Applications
» Communications
» Localization
» Telemetry
» Military
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Towards Orthogonality ...? (1/3) Tyndall

(] Fresnel Diffraction
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Towards Orthogonality ...? (2/3) yndall

[ Fresnel Diffraction to Talbot Effect

2T
l—=Z +o00
e 1 R
E(,z) = — f E(x,0)e'T2™)" dx
irz J_.,
2T d
l—Z 4=
e A 2 ll( —x—md 2
albot Effec — Az~ Xx—m )
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m 2

Rayleigh’s definition of Talbot distance:
2d?
ZT = T, AKLd

0 0.5 1 1.5 2
2(xZp = d*/))
H. F. Talbot, “Facts relating to optical science. No. IV,” Philosophical Magazine Series 3, 9(56): 401-407, (1836)
Lord Rayleigh, “On copying diffraction-gratings, and on some phenomena connected therewith,” Philosophical Magazine Series 5 11(67): 196-205, (1881).
John T. Winthrop and C. R. Worthington, “Theory of Fresnel Images. |. Plane Periodic Objects in Monochromatic Light,” J. Opt. Soc. Am. 55, 373-381 (1965) 17



Towards Orthogonality ...? (3/3)

J What we want from Fresnel transform

CHAPTER TEN

Why is the Fresnel
Transform So Little
Known?

F. Gori

10.1.  INTRODUCTION

Fresnel diffraction integrals are customarily evaluazed by nearly everyone working in
optics. Nevertheless, they are seldom classified under the heading of the Fresnel trans.
forrn. In cther words, the Fresnel transform, thought of as a mathemarical toal, is not
very well known, Let us make a comparison with the use of the Fourier eansform,
whose theory is generally well known. As repeatedly expericnced by anyone dealing
with Fourier analysis, a handful of theorems can often save considerable labour and

give a clear insight into a problem. A certain knowledge of the Fresnel transform theory
<ould afford similar advantages, Yet, while most optics texthooks furnish some material
on the Fourier transform, they hardly do the same for the Fresnel ransform Generally
speaking, they do not even mention it.

There are of course reasons for this state of affairs. From a mathematical stand-
point, it could be said: “The Fresnel wansform is nothing else than the result of a
suitable filiering operation on the Fourier spectrum. Hence, there is no need to give

ita special status’. Although the premise is correct, the conclusion is questionable, -

Indeed, by the same token, we could dispose of the: Fourier transform itself because
it s a particular ease of the (bilateral) Laplace transform.
knowledge of theorems that directly apply to the Fresnel 1
cal and useful than an

ously enough, the
m is more pract-
irect deduction of results via Fourier theory, In addition,
only in certain papers is the conmection with the Fourier transform actually
exploited. Another obfection that could be raised against the study of the Fresnel
transform theory is: i of the usefulness of Fourier analysis stems Tom the exis
tence of extensive tables where the Fourier transforms of very many functions can
be found. This casy to applv Fourier theory and generally gives rise 1o
closed form resu ituation is much worse with the Fresnel transform whose
closed form expression is known for a few funcrions on *h an objection prab-
ably explains the real origin of the lack of interest for the Fresnel transforn Indeed
even a simple funciion such as rect(x) requices the use of special functions (the

139

—_—

10.3.  THEOREMS AND EXAMPLES

Several theorems on the Fresnel transform can be mentioned (Table 10.1). A few words

a.bou( notations are in order. The symbol # between two Functions stands for convolu-
tion defined in the usuzl manner, i.e.,

Table 10.1  Theorems

(1) Convolution

Saf F8)r=(Fun )i = (2 8.)c)

(2) Correlatdon &, { ) g}(x) - ( e g‘](::) - [f(g)* & f)) )

—Llvy=
dé dx

(3) Derivative 5 {df d j’,

4] 2
4) Integral 5a{ (f)ﬂf}(xJ=If,(x)dx

(5) Shift §u{f(§)e"‘ ()= exp) itex i K f,(x--—"f—]
4y 2ma )

(6) Scaling

ootz

B ()™ Ly & . I T
{;(E)e }Ex) ‘jm-ﬂex‘{mmﬂx ]I“'al“.ﬂ

[RE —x et
{ercole Fals) 5~

(7 Cylinder

(&) x-procluc:

(9 Corcelation invarianee (regeo={}. ez )
) v 7

_E_V'(”f dx= J‘:!/u C-\’)IZLLY

IEfEy=0for |x! x, then

P et 5[ m . nz_‘
Jalx)=e ..Z\Lfn\—__zxc Pl o) [N Jodfx -2

(10) Parseval

(11) Sampling

—_—_—

- Tyndall

National Institute

C. H. Zhou and L. R. Liu, “Simple equations for the calculation of a
multilevel phase grating for Talbot array illumination,” Opt. Commun.,
vol. 115, pp. 40-44, Mar 1 1995.

J. M. Wen, et al., “The Talbot effect: Recent advances in classical
optics, nonlinear optics, and quantum optics,” Adv. Opt. Photonics, 5:
83-130, (2013).

D. P. Kelly, “Numerical calculation of the Fresnel transform,” (in
English), J. Opt. Soc. Am. A-Opt. Image Sci. Vis., 31(4): 755-64,
(2014)

C. J. Cheng, et al., “Efficient FPGA-based Fresnel transform
architecture for digital holography,” J. Display Technol., 10: 272-281,
2014).

f. Aize)nberg and J. T. Astola, “Discrete generalized Fresnel functions
and transforms in an arbitrary discrete basis,” IEEE Trans. Signal
Process., vol. 54, pp. 4261-4270, Nov 2006.

Etc.

 Desired Properties
» Orthogonality
» Convolution
» Duality
» Discrete Transformation

> Etc.
18

F. Gori, "Why is the Fresnel transform so little known?," in Current Trends in Optics, Academic Press, 1994, pp. 139-148.



Discrete Fresnel Transform

O From Continuous to Discrete
> Periodicity <> Discretization

» Time < Frequency
(
dZ
a=Az=—
N _ZT_dz
Z=N"NZ
+00 1 +oo
M, () = Z S(t-nd)== ) €™
n=—oo n=—oo
+ oo 1 +00
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Fresnel Integral: s(n,z) = %ﬁ: s(t, 0)ela 5% g

Sr(m) = s(n) * W, (¢)

+ o0

W= ) s «8(n—nd)
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Xing Ouyang, et al., “Discrete Fresnel Transform and Its Circular Convolution,” arXiv:1510.00574v1, 2015.

National Institute
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Discrete Fresnel Transform — Cont’d

O From Continuous to Discrete
> Periodicity <> Discretization
» Time < Frequency

Talbot Effect

0 0.5 1 1.5
Z(XZT = dz/)\)

$r(m) = s(n)  Wqy(t)

( 2

Tyndall

National Institute

N = 0(mod 2)

. T d
| ()
==Y
= 4
VN & 1\d\ i _(n_l)g)z
s<(n+—>— e @/n\! 2N/ N = 1(mod 2)
2/N

\
d
Set n= kﬁ

Then we get the Discrete Fresnel Transform:

.TT
elnkm* N = 0(mod 2)

2

ei%(k_m'%) N = 1(mod 2)

Xing Ouyang, et al., “Discrete Fresnel Transform and Its Circular Convolution,” arXiv:1510.00574v1, 2015.
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Discrete Fresnel Transform — Cont’d

O Discrete Fresnel Transform (DFnT)

LT
i ek N = 0(mod 2)

e
N 2y

e’ N\""""2) N = 1(mod 2)

 Properties
» Unitary
» Circulant
» Eigenvalues and Eigenvectors
» Determinant
» Similarity Transformation
» Convolution Theorem:

The DFnT of a convolution is the convolution of one with the DFnT of the other

Xing Ouyang, et al., “Discrete Fresnel Transform and Its Circular Convolution,” arXiv:1510.00574v1, 2015.

Tyndall

National Institute
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Finally ... Orthogonal Chirp-Division Multiplexing € Tyndal
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O Similarities and Differences (Compatibility and Improvement)
OFDM

> Waveforms

Narrowband Subcarriers
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» Orthogonality

Fourier Transform

» Linear System Transmission
Block Transmission (CP)

1 Applications
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Natlonal Insmute

Outline §Tyndall

O Applications and Current Progress
» Wireless Access Systems
» Fiber-Optic and Radio-over-Fiber Systems
» What’s More

Traditional CSS




Future Optical and Wireless Access Networks Tyndall

Air Interface Diverse Use Cases in 6G

[ & e _
Ll =
L QD EIERRE | oot i
Autonomous Vehicles IOT Smart Cit E ﬁﬁ

[ 0 =Y @o? ’
@ems onse _ﬂ‘ j_ Industry 4.0
Moblle Broadband

Core Network Backhaul Fronthaul

o
3
=
o <
(1’ 3 '
g REY ChirpComm Need for Converged Wireless Access
0 ((‘ ’)) RRU .
@ ((( ))) WLAN I Mobile Networks 7
Satellite V22X LoRa/NB-loT/LTE-M/Zigbee
__J  4G/LTE D-RAN 22 /{ Starlink/ViaSat/Telesat | 802.11p/DSRC/C-V2X
Diverse operating Wireless Technologies

scenarios & impairments

Looking for A Flexible and Versatile Signal Modulation Technology as the Unified Air Interface
enabling the so-called Ubiquitous Connectivity for Everyone, Everything, Anytime, and Anywhere

Can OCDM be the Solution as the

Converged Air Interface? 25



OCDM in High-Speed Wireless Systems (1/3) < Tyndal

0 (a) 4-QAM o (b) 16-QAM . (¢) 64-QAM
10 - B - OFDM IRx 10 10
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"'.. @ OCDM/ZF 2Rx
“ —@— OCDM/MMSE 2Rx
107 R T 7107 107
\E
~ R
& 1073 F Eﬁ.‘!‘ 102 1072
l Q‘.!‘Q
1074 ¢ l'l {10 Rg 107 k!
w
107 o 107 107
0\@
107 : . 10 : D \Q 10 : : N
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
E, /N, (dB) E, /N, (dB) E,/N,(dB)

Figure:. BER performance of the OCDM systems with both ZF and MMSE equalizers and the OFDM system under the LTE extended
vehicle A channel model with receiver diversity; (a) 4-QAM, (b) 16-QAM, and (c) 64-QAM.
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X. Ouyang and J. Zhao, “Orthogonal chirp division multiplexing,” IEEE T Commun, 64(9): 3946—-3957 (2016)



OCDM in High-Speed Wireless Systems (2/3)
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Figure:. BER performance of the OFDM, DFT-precoded OFDM, and OCDM systems under the LTE extended vehicle A channel model
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with various guard interval length. (a) 4-QAM, (b) 16-QAM, and (c) 64-QAM.

X. Ouyang and J. Zhao, “Orthogonal chirp division multiplexing,” IEEE T Commun, 64(9): 3946—-3957 (2016)
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OCDM in High-Speed Wireless Systems (3/3) gTXQQSH
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Fig. 14. The BER performance of SC-FDE and OCDM systems with iterative Fig. 15. The BER performance of the OFDM, SC-FDE and OCDM using
block decision feedback equalization with (a) 0.8-us and (b) 3.2-us GI. forward error coding with 3.2-us GI and code rates of (a) 2/3 and (b) 3/4.

X. Ouyang and J. Zhao, “Orthogonal chirp division multiplexing,” IEEE T Commun, 64(9): 3946—-3957 (2016) 28



OCDM in Low-Power/Long-Range Wireless Systen%T ndaII
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X. Ouyang, et al., “Chirp spread spectrum toward the Nyquist signaling rate — Orthogonality condition and applications,” IEEE Signal Proc Let, 24(10): 1488—-1492, (2017)



OCDM in Fiber-Optic Systems (Coherent Optics) < Tyndal

1 Coherent Optical OCDM (CO-OCDM)
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X. Ouyang, et al., “Orthogonal Chirp Division Multiplexing for Coherent Optical Fiber Communications,” J. Lightwave Technol. 34, 4376-4386 (2016)



Experiment Results @ 36 Gbit/s < Tyndall
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Figure.: The measured (a) power spectral densities (PSDs) and ~ Figure.: Experiments results of the BER versus OSNR of the
(b) Q-factors of each subchannel/chirp in the CO-OFDM and CO-OFDM and CO-OCDM systems.
CO-OCDM systems.
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OCDM in Fiber-Optic Systems (IM/DD) Tyndall

O Intensity Modulation and Direct Detection
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X. Ouyang, et al., “Intensity-modulation direct-detection OCDM system based on digital up-conversion” in CLEO 2018, San Jose, US, 13-18 May, 2018 paper SM2C.2.

X. Ouyang et al., “Experimental demonstration of 112 Gbit/s orthogonal chirp-division multiplexing based on digital up-conversion for IM/DD systems with improved resilience

to system impairments,” in the 44th ECOC, Rome, Italy, 23-27 Sept., 2018, p. Mo4F.3.

X. Ouyang, et al., “Orthogonal chirp-division multiplexing for IM/DD-based short-reach systems,” Optics Express, 27(16), 2019 32



Experiment Results @ 96/112 Gbit/s - Tyndal
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Fig.: Left: The measured BER performance of the conventional DMT-OFDM and the proposed IM/DD OCDM at (I) 96 Gbit/s and (II) 112 Gbit/s.
Middle: The received constellation diagrams of the DMT-OFDM signals and that of the proposed IM/DD-OCDM signals with an input power = —1 dBm
at 112 Gbit/s. Right: (i) The measured CFR of the systems at 112 Gbit/s, and (ii) the measured SNR of each subcarrier in the DMT-OFDM and (iii) that
of each chirp in the proposed IM/DD-OCDM.

X. Ouyang et al., “Experimental demonstration of 112 Gbit/s orthogonal chirp-division multiplexing based on digital up-conversion for IM/DD systems with improved resilience 33
to system impairments,” in the 44th ECOC, Rome, Italy, 23-27 Sept., 2018, p. Mo4F.3.



Experiment Results @ 180 Gbit/s

BER

Measured BER performance of OFDM and the proposed OCDM and systems with 36-
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Photonics in 5G+/6G and Beyond < Tyndall

O What do we know about the 5G+/6G o D

» More bandwidth (Frequency Dimension)
» More antennas (Spatial Dimension) onten
» More users (numbers, types, scenarios) raaized RO
» Higher Frequencies (> 50Hz)

(J What do photonic technologies offer?
» High bandwidth and high speed routing and transport
» Already deployed multi-user access infrastructure
» Potential to provide power efficiency
» Enabling technology for mm-wave and THz systems

Fiber (10’s kms)
Network (More Fiber Distribution)

\
BBUs
Signals (Greater Spectral Efficiency)

Bandwidth (Leverage mm-wave /THz) Courtesy: Colm Browning, OSA APC, 2021
35

Colm Browning, “Flexible Converged Photonic and Radio Systems: A Pathway toward Next Generation Wireless Connectivity,” OSA APC, 2021



Radio-over-Fiber for Millimeter Fronthaul Tyndall

 Basic Concept

Mobile Data

Optical Frequency
Comb

 Why considering OCDM
» Chromatic dispersion induced power fading due to heterodyning by direct detection
» Impairments such as phase noise, frequency offset
» Multipath transmission of wireless access

36

Colm Browning, “Flexible Converged Photonic and Radio Systems: A Pathway toward Next Generation Wireless Connectivity,” OSA APC, 2021



Optical/mm-wave A-RoF System
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C. Browning et al., “Orthogonal Chirp-Division Multiplexing for Performance Enhanced Optical/Millimeter-Wave 5G/6G Communications”, OFC, 2021
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Results — Narrowband (200MHz,
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Results — Wideband (1GHz)
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Opticallmm-wave A-RoF System w. 2m Wireless §Tyndall
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TABLE 2. Wideband and 5G signal numerologies.

Prop. | Wideband | Mobile (5G) | Unit
# Chirps/SCs 128 820 n/a
(DDF(n)T size | 256 1024 n/a
QAM order 16 128 /256 n/a
Symbol Rate 311.25 0.244 MHz
Bandwidth 4000 200.2 MHz
Cyclic Prefix 6.25 6.25 %
Raw Data Rate | 16 1.4/1.6 Gb/s

SC: Subcarrier

C. Browning, et al., "Orthogonal Chirp-Division Multiplexing for Future Converged Optical/Millimeter-Wave Radio Access Networks," IEEE Access, 10: 3571-3579 (2022).
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Results — (200 MHz / 4 GHz) - Tyndall

ational Institute
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What’s More ... Tyndall

1 Wireless and Optical Access

L Submarine Acoustic Communications
O Satellite

O Telemetry

1 Integrated Radar/Sensing and Communications
» Radar and Sensing is a type of channel estimation for communications

42



Conclusion and Outlook

O Future Wireless and Optical Access Networks
» Flexible and Unified Air Interface
» Wireless and Optical Convergence
» Backward and Forward Compatibility

1 Orthogonal Chirp-Division Multiplexing
» For a variety of wireless systems (Bandwidth/Power Limited)

» Suitable for a diversity of scenarios
o RF, mmWave, optical systems
o Acoustic, Space, etc.
» Integrated Radar/Sensing and Communications

(J Future Work

» Just a waveform modulation technology

Capacity

1Tbps

1Gbps

Tkbps

Tyndall

National Institute

What is Next for 6G?
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Channel Estimation Based on OCDM Signals (1/5) € Tyndall

O Fibre-Optic Systems (Single-Input Single-Output)
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Fig. 6. Performance of the proposed estimator against the window width. The
MSE performance (solid lines) are the sum of the noise term (dotted lines)
and the distortion due to exceeding the window (dashed lines).
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Fig. 7. Performance comparison of the proposed and SAW estimators with
a received SNR = 30 dB. Both estimators are normalized to the same noise
suppression capability as the noise terms (dotted lines) overlapped.
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