

Optica - Webinar

Ill-defined topologies and energy sinks in photonic systems

Mário G. Silveirinha

Geometrical illustration of ill-defined topology

Topological Photonics

Topological systems

No propagation in the bulk region

Topological systems (contd.)

Edge states on the boundary:

Net number of unidirectional of edge states is determined by the gap Chern number

Bulk-edge correspondence and stability

1st Dec., mario.silveirinha@tecnico.ulisboa.pt

System formed by materials with a common band gap is topological if: # edge states propagate inward = # edge states propagate outward = system has a "stable" (nonsingular) response

JF TÉCNICO LISBOA

instituto de telecomunicações

Stability

Suppose that more waves go "inward" than "outward":

$$\begin{pmatrix} E_1^- \\ \dots \\ E_M^- \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} & \dots & \dots & S_{N1} \\ \dots & \dots & \dots & \dots & \dots \\ S_{M1} & \dots & \dots & \dots & S_{MN} \end{pmatrix} \begin{pmatrix} E_1^+ \\ E_2^+ \\ \dots \\ \dots \\ \dots \\ E_N^+ \end{pmatrix}_{N>M}$$

Underdetermined system (null space nontrivial):

It is always possible to pick an inward excitation that does not lead to outgoing waves

Energy is concentrated at the junction point: topological sink

 $\sum_{i} n_i^+ = \sum_{i} n_i^-$

 $l \sim n_{s}$

Ill-defined topology due to a continuous translational symmetry

M. G. Silveirinha, "Chern Invariants for Continuous Media", Phys. Rev. B, 92, 125153, 2015.

instituto de telecomunicaç 1st Dec., mario.silveirinha@tecnico.ulisboa.pt

Electromagnetic continua: invariant under continuous translations

$$\overline{\varepsilon} = \begin{pmatrix} \varepsilon_t & -i\varepsilon_g & 0\\ i\varepsilon_g & \varepsilon_t & 0\\ 0 & 0 & \varepsilon_a \end{pmatrix}$$
$$\mathbf{B}_0 = B_0 \hat{\mathbf{z}} \qquad \mathbf{B}_0$$

 Instituto de telecomunicações
 1st Dec., mario.silveirinha@tecnico.ulisboa.pt

Topological band theory

$$\mathcal{C} = \frac{1}{2\pi} \iint dk_x dk_y \,\mathcal{F}_{\mathbf{k}}$$

Electromagnetic continuum

Magneto-optical material

$$\overline{\varepsilon} = \begin{pmatrix} \varepsilon_t & -i\varepsilon_g & 0\\ i\varepsilon_g & \varepsilon_t & 0\\ 0 & 0 & \varepsilon_a \end{pmatrix}$$

$$\varepsilon_t = 1 + \frac{\omega_0 \omega_e}{\omega_0^2 - \omega^2}$$

$$\varepsilon_g = \frac{\omega_e \omega}{\omega_0^2 - \omega^2}$$

$$\mathcal{E}_a = 1$$

TM waves:
$$k^2 = \frac{\varepsilon_t^2 - \varepsilon_g^2}{\varepsilon_t} \left(\frac{\omega}{c}\right)^2$$

Origin of the ill-defined topology

Photonic crystals (BZ is a torus):

Electromagnetic continuum

The continuous translational symmetry leads to a ill-defined topology (the "Euclidean plane" is not a compact set)

For large wave vectors the material response becomes asymptotically the same as the vacuum!

Do other types of cut-off lead to the same topology?

Different models

- Local description \mathcal{E}_{loc}
- Full spatial cut-off

$$\overline{\varepsilon} = \varepsilon_0 \mathbf{1} + \frac{1}{1 + k^2 / k_{\text{max}}^2} \left[\overline{\varepsilon}_{\text{loc}} \left(\omega \right) - \varepsilon_0 \mathbf{1} \right]$$

Hydrodynamic model

TÉCNICO LISBOA β = "diffusion" velocity

 $\mathbf{B}_0 = B_0 \hat{\mathbf{z}}$

Topology of a magnetized plasma calculated with a <u>full wave vector cut-off</u>

$$\overline{\varepsilon} = \varepsilon_0 \mathbf{1} + \frac{1}{1 + k^2 / k_{\max}^2} \left[\overline{\varepsilon}_{loc} (\omega) - \varepsilon_0 \mathbf{1} \right]$$

 $\omega_0 = \omega_p$ $k_{\rm max} = 5.0\omega_p / c$

Topology of a magnetized plasma calculated with the hydrodynamic model

Edge states with the hydrodynamic model

Comparison with the "local" formulation (without a cut-off)

1st Dec.,

mario.silveirinha@tecnico.ulisboa.pt

TÉCNICO LISBOA

instituto de

lĮ

24

Material with an ill-defined topology

Can the "correct" model be determined with an experiment?

In practice no, because the additional edge state is impossible to measure as it is extremely confined to the interface!

instituto de

1st Dec., mario.silveirinha@tecnico.ulisboa.pt

The topology depends on the unknown high-k response:

Topological energy sinks

D. E. Fernandes, M. G. Silveirinha, "Topological origin of electromagnetic energy sinks", Phys. Rev. Appl., 12, 014021, 2019.

D. E. Fernandes et al., "Experimental verification of ill-defined topologies and energy sinks in electromagnetic continua," Adv. Photon. 4(3) 036002 (2022), doi 10.1117/1.AP.4.3.036002.

ITÉCNICO LISBOA instituto de telecomunicações

The cut-off can be imitated with an air gap

"Synthetic" cut-off : $k_{\text{max}} = 1 / d$

TÉCNICO LISBOA

instituto de

ll.

1st Dec., mario.silveirinha@tecnico.ulisboa.pt

When the air gap is closed the edge mode is supressed

TÉCNICO LISBOA

IJ

instituto de telecomunicações 1st Dec., mario.silveirinha@tecnico.ulisboa.pt

Unidirectional (backward) edge mode

Unidirectional (backward) edge mode

Topological sink

See also: A. Ishimaru, Tech. Rep. (Washington Univ. Seattle, 1962). U. K. Chettiar, A. R. Davoyan, and N. Engheta, Opt. Lett. 39, 1760 (2014).

The wave is halted in its tracks at the "topological" singularity!

instituto de

1st Dec., mario.silveirinha@tecnico.ulisboa.pt

Experimental verification of the topological sink

D. E. Fernandes et al., "Experimental verification of ill-defined topologies and energy sinks in electromagnetic continua," Adv. Photon. 4(3) 036002 (2022), doi 10.1117/1.AP.4.3.036002.

TÉCNICO LISBOA

instituto de

ւն

1st Dec., mario.silveirinha@tecnico.ulisboa.pt

Topological singularity

instituto de telecomunicações

A beautiful paper from the 60's

Rectangular waveguides loaded with magnetised ferrite, and the so-called thermodynamic paradox

Prof. G. Barzilai and G. Gerosa

PROC. IEE, Vol. 113, No. 2, FEBRUARY 1966

One-way guide:

Fig. 7

Structure realised for the experiment

- a Line drawing (dimensions in millimeters)
- b Piece uncovered
- d, e, f, g Appearance of the piece after sending r.f. energy, at about 10s intervals

The ferrite used was Ferramic R4, magnetised by a d.c. external magnetic field of $1.9 \times 10^{6}/4\pi$ A/m, and the total thickness of the metallic walls (silver and copper) was about 0.05 mm

1st Dec.,

Ill-defined topologies of dispersive photonic crystals

F. R. Prudêncio, and M. G. Silveirinha, Phys. Rev. Lett. 129, 133903, 2022

1st Dec., mario.silveirinha@tecnico.ulisboa.pt

38

Photonic systems are different from electronic systems: No ground state!

particle-hole symmetry

The spectrum is symmetric with respect to the line ω =0. In particular, this implies that in a photonic crystal there are infinite number of bands below the gap.

TÉCNICO LISBOA

infinite number of branches

An infinite number of terms may contribute to the gap Chern number

JF TÉCNICO LISBOA

instituto de telecomunicaçõ 1st Dec.,

Magnetized electric plasma photonic crystal

Hexagonal array of air rods in a magnetized plasma

 $\varepsilon_t = 1 - \frac{\omega_p^2}{\omega^2 - \omega_c^2} \qquad \qquad \varepsilon_g = \frac{1}{\omega} \frac{\omega_p^2 \omega_c}{\omega_c^2 - \omega^2}$

Bands pile up near the plasma frequency and at low frequencies.

Chern number of low frequency gap is not an integer!

0.0^E

50

100

150

200

250

-

What is wrong? Why the Chern theorem is not valid?

Origin of the ill-defined topology (2/3)

$$C_{\rm gap} = \delta C_1 + \delta C_2 + \ldots = ???$$

Origin of the ill-defined topology (conclusion)

Regularization of the topology

Spatial dispersion effects

I) Hydrodynamic model (takes into account the effects of diffusion which prevents localization)

II) Full cutoff model: high-spatial frequency material response is uniformly suppressed.

Convergence of low-frequency gap Chern number

Regularized topology depends on the considered cut-off!

Geometrical analogue

instituto de

0

Local

TÉCNICO LISBOA

ւլլ

Hydrodynamic

Full cut-off

The crystal periodicity is insufficient to guarantee a well defined topology

1st Dec., mario.silveirinha@tecnico.ulisboa.pt

Summary

• The topology of electromagnetic continua is typically ill-defined due to the continuous translational symmetry.

•The bulk-edge correspondence breaks down in systems with an ill-defined topology. This creates the opportunity to abruptly halt a wave and generate a topological singularity that dissipates all the incoming energy essentially at a single point of space.

D. E. Fernandes, et al, "Topological origin of electromagnetic energy sinks", Phys. Rev. Appl., 12, 014021, 2019.
D. E. Fernandes et al., "Experimental verification of ill-defined topologies and energy sinks in electromagnetic continua," Adv. Photon. 4(3) 036002 (2022), doi 10.1117/1.AP.4.3.036002.

