Leveraging Silicon Carbide Defects to Build Quantum Information Hardware

Marina Radulaski

Assistant Professor of Electrical and Computer Engineering University of California, Davis

mradulaski@ucdavis.edu Rlab.engineering.ucdavis.edu

> UCDAVIS UNIVERSITY OF CALIFORNIA

Optica Webinar, September 27, 2022

ENGINEERING Google Research

PAULI CENTER for Theoretical Studies

Radulaski Lab at the University of California, Davis

Victoria Norman, Eliana Mann, M.R., Brinda Puri, Pranta Saha, Tristan Adams, Sridhar Majety Stanford University Jelena Vuckovic

Stuttgart University Jörg Wrachtrup Florian Kaiser

Linkoping University Nguyen Tien Son Jawad Ul-Hassan

QST Japan Takeshi Ohshima

> TU Munich Kai Müller

UC Davis Richard Scalettar

ETH Zurich Marina Krstic Marinkovic

Quantum information technologies

Quantum Sensing

J. H. Kimble, *Nature* 453.7198, 1023-1030 (2008) V. A. Norman, S. Majety, Z. Wang, W. H. Casey, N. Curro, **M. R.**, *InfoMat*, 1- 24 (2020)

Solid state quantum emitters

Color Centers in Bulk

+ homogeneous, long coherence - weak cavity coupling

Quantum Dots

+ bright, strong cavity coupling - inhomogeneous

Emitters in 2D Materials

+ compact

- inhomogeneous, weak coupling

Color centers

Lattice point defects

Localized electronic orbitals

 V_{Si}^{-} in 4H-SiC

O.O. Soykal, et al., *Phys. Rev. B* **93**, 081207(R) (2016)

Quantum Technology Backbone

Quantum Internet

- Single-photon emission for QKD
- Indistinguishable photon emission for entanglement distribution
- Spin-photon entanglement and long spin coherence for quantum repeaters

Quantum Computing

• Cluster entangled state generation for the measurement-based quantum computing

Quantum Simulation

 Emitter-cavity systems simulating condensed matter physics

Quantum Sensing

• ODMR for magnetometry and thermometry

PHOTONIC BOOS NTEGRATED

Passive photonics

- Nanopillars
- Waveguides

Active photonics

- Nanocavities
- Coupled cavity arrays

NIR emission

Majety et al., arXiv:2111.00136

Inversely designed devices Lukin *et al., Nature Photonics* (2020)

Integration preserves properties

Babin et al. Nature Materials (2022)

Integrated Quantum Photonics in Silicon Carbide

Hong-Ou-Mandel interferometer on chip

Coupled cavity arrays with color center ensembles

S. Majety, P. Saha, V. A. Norman, M. R., Journal of Applied Physics 131, 130901 (2022)

Emitter-cavity interaction

Polariton – hybridized light-matter state

M.R., K. Fischer, J. Vuckovic, *AAMOP 66, 3* (2017), **M.R.** *et al., PRA* 96, 011801(R) (2017) R. Trivedi, **M. R.**, K. Fischer, J. Vuckovic, *PRL* 122, 243602 (2019)

Jaynes-Cummings and Tavis-Cummings experiments

N = 1 emitter in cavity

Single atom

Quantum dot

Superconducting circuit

Rare-earth doped crystal

Image credit: http://quantum-technologies.iap.uni-bonn.de/, *Nature Materials* 9, 304–308 (2010) *PRL* 103, 083601 (2009), *Nature Communications* 8, 14107 (2017)

Active photonics in silicon carbide

6H-SiC, smart-cut

3C-SiC on Si

*Photonic crystal cavities

SiC cavity fabrication

Hu, Vuckovic and Noda groups

Triangular SiC waveguides

S. Majety, V. A. Norman, L. Li, M. Bell, M. R., J. Phys. Photonics 3, 034008 (2021)

Efficient collection and detection of emission

Photonic crystal mirror

S. Majety, [M.R.] *et al., arXiv:2208.05569*

Superconducting detector integration

NbN SNSPD integration with 3C-SiC

NbTiN integration with 4H-SiC

Martini et al., *Opt. Express* 27, 29669-29675 (2019) Collaboration with Mueller group, S. Majety, [**M.R.**] *et al., arXiv:2208.05569*

Triangular SiC nanobeam cavities

S. Majety, V. A. Norman, L. Li, M. Bell, M. R., J. Phys. Photonics 3, 034008 (2021)

Dual SiC cavities – photonic molecule

S. Majety, V. A. Norman, L. Li, M. Bell, M. R., J. Phys. Photonics 3, 034008 (2021)

Applications of triangular SiC cavities

Quantum repeaters

Cluster entangled state generation

Quantum light generation

S. Majety, P. Saha, V. A. Norman, **M. R.**, arXiv:2111.00136 (2022)

N atoms in a cavity

Tavis-Cummings model & inhomogeneous broadening

40

 $g_N = g\sqrt{N}$ interaction strength increases with \sqrt{N}

N atoms

 $g_n = g$

M.R., K. Fischer, J. Vuckovic, AAMOP Vol. 66 Ch. 3 (Elsevier, 2017)

Photon Blockade (PB) in multi-emitter-cavity systems

M.R., K. Fischer, J.L. Zhang, K. Lagoudakis, J. Vuckovic, *Phys. Rev. A* 96, 011801(R) (2017) R. Trivedi, M. R., K. Fischer, J. Vuckovic, *Phys. Rev. Lett.* **122**, 243602 (2019)

Excited atom time evolution in a lossy cavity

Open Quantum System Tavis-Cummings Dynamics

Exact approach

• Quantum Master Equation – exponential memory and runtime scaling

Atom / a two-level system / qubit

 $c_1|100...0\rangle + c_2|010...0\rangle + c_3|001...0\rangle + \cdots + c_N|000...1\rangle$ How do the atomic amplitudes evolve in a lossy cavity?

Collaboration with Marinkovic group

Quantum mapping of the Tavis-Cummings dynamics

Collaboration with Marinkovic group M. K. Marinkovic, **M. R.**, arXiv.2208.12029

Quantum Mapping Algorithm of Resonator Interaction with *N* Atoms (Q-MARINA)

Digital quantum modeling of an analog quantum system – time and space complexity O(N)

M. K. Marinkovic, **M. R.**, arXiv.2208.12029

Tavis-Cummings time evolution for *N* = 7

 $\kappa = 5, g = 10$

Tavis-Cummings time evolution scaling

exponential QME runtime scaling **linear** Q-MARINA runtime scaling

exponential QME memory scaling **linear** Q-MARINA memory scaling

M. K. Marinkovic, **M. R.**, arXiv.2208.12029

Q-MARINA tests on IBM Q hardware

UCDAVIS UNIVERSITY OF CALIFORNIA

M. K. Marinkovic, **M. R.**, arXiv.2208.12029

NISQ-design of analog quantum photonic hardware

All-photonic quantum simulators

All-photonic quantum simulation

- Superfluid-Mott insulator transition
- Fractional Quantum Hall effect
- Localization effects

Localization vs. delocalization Cavity-emitter interaction vs. cavity-cavity hopping

Hartmann, Brandao, Plenio, *PRL* **2**, 527 (2008) Carusotto and Ciuti, *Rev. Mod. Phys.* **85**, 299 (2013)

Coupled cavity arrays with multiple emitters

Modeled by the Tavis-Cummings-Hubbard Hamiltonian

$$H_{TCH} = \sum_{i=1}^{n} \left\{ \Omega_{i} a_{i}^{\dagger} a_{i} + \sum_{j=1}^{N_{i}} \left[\omega_{i,j} \sigma_{i,j}^{+} \sigma_{i,j}^{-} + g_{i,j} \left(a_{i}^{\dagger} \sigma_{i,j}^{-} + \sigma_{i,j}^{+} a_{i} \right) \right] \right\} - \sum_{i=1}^{n-1} J_{i,i+1} \left(a_{i}^{\dagger} a_{i+1} + a_{i+1}^{\dagger} a_{i} \right)$$

Spectrally disordered emitters in CCAs

UCDAVIS UNIVERSITY OF CALIFORNIA

Collaboration with Scalettar group J. Patton, V. A. Norman, R. Scalettar, **M.R.**, arXiv:2112.15469

Participation ratio metrics for wavefunctions

Nodal Participation Ratio P_N

Is the wavefunction delocalized across all nodes?

$$P_N = \left[\sum_{l}^{N} \left(\langle \mathcal{N}_{ph,l} \rangle + \langle \mathcal{N}_{e,l} \rangle \right)^2 \right]^-$$

Polaritonic Participation Ratio P_P

Is the wavefunction light-matter hybridized?

$$P_P = \left[\left(\sum_{l}^{N} \langle \mathcal{N}_{ph,l} \rangle \right)^2 + \left(\sum_{l}^{N} \langle \mathcal{N}_{e,l} \rangle \right)^2 \right]^{-1}$$

Collaboration with Scalettar group J. Patton, V. A. Norman, R. Scalettar, **M.R.**, arXiv:2112.15469

Multi-emitter coupling vs. inhomogeneity

Metrics for N=5, $\Delta=const$

Light-matter interaction engineering

- Quantification of cavity QED effects
- Number of emitters needed to design a highly polaritonic state
- Parameters that optimize polaritonic character for a specific wavefunction
- Localizing vs. delocalizing configurations

Collaboration with Scalettar group J. Patton, V. A. Norman, R. Scalettar, **M.R.**, arXiv:2112.15469

Web: rlab.engineering.ucdavis.edu | E-mail: mradulaski@ucdavis.edu | Twitter: @MarinaRadulaski

