

Technical Groups

Nonlinear Frequency Upconversion: A Novel Route for High-Sensitive Mid-Infrared Detection and Imaging

Featuring Dr. Ajanta Barh, Institute for Quantum Electronics, ETH Zurich

5th October 2022

Technical Group Executive Committee

Chair Dr. Ghanshyam Singh

Malaviya National Institute of Technology Jaipur, India

Vice Chair Dr. Eva M. Valero Benito University of Granada, Spain

Social Media Officer Dr. Ni Chen King Abdullah University of Science and Technology, Saudi

Webinar Officer Kamal Kishor Choure

Malaviya National Institute of Technology Jaipur, India

Events Officer Dr. Congli Wang University of California, Berkeley

2

About Our Technical Group

Our technical group focuses on utilization of optical and optoelectronic devices and systems for digital data storage, processing, interconnection and networking.

Our mission is to connect the 1300+ members of our community through technical events, webinars, networking events, and social media.

Our past activities have included:

- Optical Communication Technologies for 5G Wireless Access Networks Webinar
- Visible Light Communications and Its Applications for 5G Webinar
- Optical Rabi Antenna
- <u>Quantum Optics with Machine-Learning: Introduction to Machine Learning Enhanced Quantum</u> <u>State Tomography</u>

Connect with our Technical Group

Join our online community to stay up to date on our group's activities. You also can share your ideas for technical group events or let us know if you're interested in presenting your research.

Ways to connect with us:

- Our website at <u>www.optica.org/ID</u>
- On LinkedIn at <u>www.linkedin.com/groups/8687264/</u>
- Email us at <u>TGactivities@optica.org</u>

Technical Group Executive Committee

Amol Choudhary Indian Institute of Technology

Ajanta Barh ETH Zürich

Lin Xu Univ. of Southampton

Alexander Solntsev University of Technology Sydney

Donnie Keathley RLE, MIT

About Our Technical Group

Our technical group focuses on the physics of nonlinear optical materials, processes, devices, & applications.

Our mission is to connect the 4000+ members of our community through technical events, webinars, networking events, and social media.

Our past activities have included:

- Webinar on High-order Dispersion Solitons and Topological Photonics in Silicon
- Transitioning into a Career in Optics Panel Discussion at FiO 2019
- Emerging Trends in Nonlinear Optics A Review of CLEO: 2019
- Emerging Biomedical Applications of Nonlinear Optics

Connect with our Technical Group

Join our online community to stay up to date on our group's activities. You also can share your ideas for technical group events or let us know if you're interested in presenting your research.

Ways to connect with us:

- Our website at <u>www.optica.org/ol</u>
- On LinkedIn at <u>www.linkedin.com/groups/8302249</u>
- On Facebook at <u>www.facebook.com/opticanonlinearoptics</u>
- Email us at <u>TGactivities@optica.org</u>

Today's Speaker

Dr. Ajanta Barh Institute for Quantum Electronics, ETH Zurich

Dr. Ajanta Barh received the Ph.D. degree in Physics from Indian Institute of Technology Delhi, India, in 2015. In 2016, she joined Optical Sensor Technology group at DTU Fotonik, Technical University of Denmark as a postdoc, where she developed novel frequency upconversion based broadband mid-infrared detection and imaging systems. In 2019, she joined the Ultrafast Laser Physics group at ETH Zurich, as a sub-group leader, where she is currently working on ultrafast solid-state and semiconductor laser systems operating in the mid-infrared, towards application in frequency metrology and sensing. Dr. Barh has authored/co-authored more than 60 peerreviewed journal and conference publications. Her research interests include mid-infrared photonics, nonlinear optics, ultrafast lasers and application. She is currently a senior member of OPTICA and chaired OPTICA Nonlinear Optics Technical group in 2018 - 2020.

THzürich

NONLINEAR FREQUENCY UPCONVERSION

A novel route for high-sensitive midinfrared detection and imaging

Ajanta Barh

Department of Physics, Institute for Quantum Electronics ETH Zurich, Switzerland

email: ajbarh@phys.ethz.ch

ETH zürich

Acknowledgement

DTU Fotonik

Department of Photonics Engineering

Prof. Christian Pedersen Prof. Peter-Tidemand Lichtenberg Dr. Peter John Rodrigo Dr. Lichun Meng Dr. Lasse Hoegstedt Dr. Yupei Tseng Prof. Ole Bang Dr. Niels M. Israelsen Dr. C. R. Petersen Innovationsfonden SHAPE OCT

ETH zürich

Uncooled MIR spectrometer. Shown

High speed 1D spectroscopic images

111111

Mid-infrared spectral range

Mid-infrared (MIR)

The surface is the second

ETH zürich

3 – 50 µm

Ultrafast Laser Physics -

mini

T- window

Topics of discussion

- Challenges in mid-infrared (MIR) detection
- State-of-the-art MIR detectors

- Parametric frequency upconversion: A novel approach
 - ✓ Brief history
 - ✓ Basic theory
 - ✓ Parameters (Bandwidth, efficiency, noise & speed)
 - $\checkmark\,$ Point detection and imaging properties
- Current progress and application examples

ETH zürich

MIR detectors

ETH zürich

Image from www.Newport.com

minis

Frequency conversion in $\chi^{(2)}$ medium

$$\vec{P} = \varepsilon_0 \chi^{(1)} \vec{E} + \varepsilon_0 \chi^{(2)} \vec{E}^2 + \varepsilon_0 \chi^{(3)} \vec{E}^3 + \dots$$

JOURNAL OF APPLIED PHYSICS VOLUME 38, NUMBER 2

FEBRUARY 1967

Up-Conversion of Near Infrared to Visible Radiation in Lithium-meta-Niobate*

1967

EHzürich

J. E. MIDWINTER AND J. WARNER Royal Radar Establishment, Malvern, Worcestershire, England (Received 18 July 1966; in final form 22 August 1966)

Single-crystal lithium niobate pumped with pulsed ruby-laser radiation has been used to convert 1.7- μ radiation to green light with more than 1% efficiency. A narrow infrared bandwidth of 17 Å, set by the phase-matching requirement only, allows the up-converter and photomultiplier to operate in place of a monochromator and infrared detector, and the emission spectrum of a mercury lamp has been thus examined in the region of 1.7 μ . A close agreement between theory and practice has been found in all respects except noise performance. Further studies of this aspect are required.

1968 INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE

1968 2B-3 Image Conversion from 1.6 μm to the Visible in Lithium Niobate, J. E. Midwinter,¹ Royal Radar Establishment, Malvern, Worc., England.

> Up-conversion of infrared radiation to the visible in lithium niobate has already been demonstrated by Midwinter *et al.*² An extension of that work is reported in which image information carried on a 1.6- μ m beam has been converted to the green and photographed in normal manner. This is made possible by the use of a highly collimated laser beam (ruby, 50

Brief history

Example: Upconversion Imaging

[Ajanta Barh, Peter John Rodrigo, Lichun Meng, Christian Pedersen, and Peter Tidemand-Lichtenberg, "Parametric upconversion imaging and its applications," Adv. in Optics & Photonics 11, 952-1019 (2019)]

ETH zürich

Ultrafast Laser Physics -

111111

- + Conserve spatial/spectral information
- + High quantum efficiency
- + Linear response
- + Low noise
- + Fast response time
- + Room-temperature operation
- + Diffraction limited PSF, large FoV

For detection using Si-CCD, $\lambda p < 1.1 \ \mu m$

ETH zürich

PSF: point spread function, FoV: Field of view

Underline principles

Ways to satisfy phase-matching

$$\Delta \vec{k} = \vec{k}_p + \vec{k}_{IR} - \vec{k}_{up} = \omega_p n_p + \omega_{IR} n_{IR} - \omega_{up} n_{up}$$

- + No spatial walk-off
- + Extra design freedom (Λ) -> wavelength tuning
- + High *d*_{eff} (diagonal tensor element)
- Introduces extra noise

ETH zürich

Collinear

✓ point detection, efficient narrow-band upconversion

Ultrafast Laser Physics -

111113

Design parameters

Non-collinear

CCD 849 nm Cam BP-1550 nm Path Delay

Temporal bandwidth: CW mixing / Synchronized mixing

[M. Mathez, P. J. Rodrigo, P. Tidemand-Lichtenberg, and C. Pedersen, "Upconversion imaging using short-wave infrared picosec- ond pulses," Opt. Lett. 42, 579–582 (2017)]

Ultrafast Laser Physics -

8

Case study with LiNbO₃

$LiNbO_3$ is the nonlinear material of choice for $2 - 5 \mu m$

- Bulk geometry (high power, imaging) \checkmark
- Chip-scale, μm nm scale (high efficiency, single photon) \checkmark

Spectral bandwidth maximization

PPLN: periodically poled lithium niobate

3.7

ETH zürich

3.5

3.9

4.1

MIR wavelength (µm)

4.3

4.5

OPTICA Webinar, ajbarh@phys.ethz.ch

Ultrafast Laser Physics -

0.1

80.0 efficiency

9 0.04 ğ

<u>.</u> 0.02

3.5

3.7

sion

0.06

~ 20 nm

3.9

4.1

MIR wavelength (µm)

4.3

4.5

05 October 2022 12

Case study with LiNbO₃

$LiNbO_3$ is the material of choice for $2-5\ \mu m$

- ✓ Bulk geometry (high power, imaging)
- ✓ Chip-scale, µm nm scale (high efficiency, single photon)

Spectral bandwidth maximization

ETH zürich

Broadband upconversion using LiNbO₃

Size of a **shoe-box**

Optics Letters

Ultra-broadband mid-wave-IR upconversion

Optics

detection

Vol. 42, No. 8 / April 15 2017 / Optics Letters

05 October 2022

AJANTA DTU Foto *Correspo

ETHZ

Trailoring spectral response using LiNbO₃

✓ simultaneous generation of many wavelengths

Optics Letters

Upconversion spectral response tailoring using fanout QPM structures Vol. 44, No. 11 / 1 June 2019 / Optics Letters

A LANTA RADIL 1/2 1 MAUMOUD TAWEICO 2 1 REDUD SUMDE 2 CUDICTIAN DEDEDOCH 1 1 AND

ETH zürich

OPTICA,Webinar, ajbarh@phys.ethz.ch

2000

1500

Noise

How low signal level it can detect? -> noise/noise equivalent power (NEP)?

- 1. Upconversion process
- 2. Photodetector Si-photodiode (PDF10A, thorlabs): ~ $1.5 fW/\sqrt{Hz}$

ETH zürich

mann

Where an upconversion detector stands in terms of noise/noise equivalent power (NEP)?

- Upconversion process 1.
- 2. Photodetector Si-photodiode (PDF10A, thorlabs): ~ 1.5 fW/\sqrt{Hz}

<u>≉9</u>

-Theory

---Experiment

MgO-LiNbO₃

Noise

What are the noise sources? noise equivalent power (NEP)?

- 1. Upconversion process
- 2. Photodetector Si-photodiode (PDF10A, thorlabs): ~ $1.5 fW/\sqrt{Hz}$

ETH zürich

C. R. Phillips, J. S. Pelc, and M. M. Fejer, J. Opt. Soc. Am. B 30, 982–993 (2013).

L. Meng, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, Opt. Exp. 26, 24712–24722 (2018).

Noise

Where an upconversion detector stands in terms of noise/noise equivalent power (NEP)?

- 1. Upconversion process
- 2. Photodetector Si-photodiode (PDF10A, thorlabs): ~ $1.5 fW/\sqrt{Hz}$

- Collinear

ETH zürich

- Spectral filter (narrow band)

R. L. Pedersen, L. Høgstedt, **A. Barh**, L. Meng, and P. Tidemand-Lichtenberg, IEEE Photon. Technol. Lett. 31, 681–684 (2019) P. S. Kuo, J. S. Pelc, C. Langrock, and M. M. Fejer, Opt. Lett. 43, 2034–2037 (2018).

Ultrafast Laser Physics -

111111

NEP COMPARISON OF	DETECTORS
-------------------	-----------

Detector	Bandwidth	NEP*	NEP upc.**	η_{up}	η_{total}
	[Hz]	$[pW/\sqrt{Hz}]$	$[pW/\sqrt{Hz}]$		
PDF10A+UpC	20	$1.4 \cdot 10^{-3}$	$2.0 \cdot 10^{-2}$	6.0%	2.0 %
Vigo PVI-4TE-5-1x1	55.10^{6}	1.0	NA	NA	66%
Teledyne 0.1 mm	50.10^{6}	80.10^{-3}	NA	NA	55%
Hamamatsu+UpC***	$1 \cdot 10^{9}$	$1.5 \cdot 10^{-3}$	75	$3.6 \cdot 10^{-6}$	$2.7 \cdot 10^{-6}$
Perkin-Elmer+UpC***	7.10^{9}	$0.86 \cdot 10^{-3}$	43	$3.6 \cdot 10^{-6}$	$2.7 \cdot 10^{-6}$
SPC+UpC****	NA	$1.3 \cdot 10^{-5}$	$2.6 \cdot 10^{-5}$	32.9%	10.5%

* The NEP of the photodetector.

** The NEP for upconversion detector (photodetector + upconversion module).

*** The results are reproduced from [16].

**** The results are reproduced from [17], SPC stands for single photon counter. A pulsed laser is used as the pump in [17], NEP upc., η_{up} and η_{total} are the instantaneous values when the pump is at the peak power.

681

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 31, NO. 9, MAY 1, 2019

Characterization of the NEP of Mid-Infrared Upconversion Detectors 2019

Rasmus Lyngbye Pedersen[®], Lasse Høgstedt, Ajanta Barh, Lichun Meng, and Peter Tidemand-Lichtenberg[®]

Upconversion detection integration time $\sim \mu s - ms$ range

Low noise

EHzürich

- Low signal/single photon
- LIDAR (low backscattered signal)

Longer wavelength upconversion

Limited choice of material for pumping at 1 μm

Mid-Infrared (6 - 10 μ m) upconversion in LiInS₂ using 1064 nm CW pump

A. Barh, L. Høgstedt, P. Tidemand-Lichtenberg, and C. Pedersen

CLEO: Science and Innovations 2018 San Jose, California United States 13–18 May 2018 ISBN: 978-1-943580-42-2

From the session Optical Metrology Nonlinear Optical Technologies (SM4D)

ORIGINAL PAPER

AgGaS₂

LASER & PHOTONICS REVIEWS

www.lpr-journal.org

Room-Temperature, High-SNR Upconversion Spectrometerin the 6–12 μm Region2022

Peter John Rodrigo,* Lasse Høgstedt, Søren Michael Mørk Friis, Lars René Lindvold, Peter Tidemand-Lichtenberg, and Christian Pedersen

Table 1. Comparison of MIRUS and the two types of FTIR—three spectrometers used in the MIR fingerprint region using globar illumination.

Parameter	MIRUS	FTIR (temporal)	FTIR (spatial)
Detector type	Si	HgCdTe	HgCdTe
Requires detector cooling?	No	Yes ^{a)}	Yes ^{b)}
Requires moving parts?	No	Yes	No
Spectral range [cm ⁻¹]	830–1750	350–7800	800–4000
Spectral resolution [cm ⁻¹]	6 ^{c)}	0.09, 2, 4, 8, 16	4
Measurement rate [spectra s ⁻¹]	40 ^{d)}	22.5 ^{e)} at 4 cm ⁻¹	0.5
SNR at 1 s	>10 000	\approx 6000 ^{e)} at 4 cm ⁻¹	1400

Point detection vs imaging

Straightforward way from **point detection** -> **imaging**: Raster scanning technique

- Resolution: Spot size
- FoV: scanning range

Imaging at 3.39 μ m gas leaks of CH₄ from a pipe using on/off-resonance wavelengths

[M. Imaki and T. Kobayashi, "Infrared frequency upconverter for high-sensitivity imaging of gas plumes," *Opt. Lett.*, vol. 32, no. 13, pp. 1923–1925, Jul. 2007]

ETH zürich

Monochromatic illumination

minis

Monochromatic illumination

b)

d)

S. Junaid, J. Tomko, M. P. Semtsiv, J. Kischkat, W. T. Masselink, C. Pedersen, and P. Tidemand-Lichtenberg, Opt. Express 26, 2203–2211 (2018)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, Nat. Photonics 6, 788-793 (2012).

ETH zürich

Ultrafast Laser Physics -

158.3 °C

Sum image

Monochromatic illumination

Tuning of pump wavelength

- Full FoV, @ 1550 nm
- Polychromatic up-image
- Acquisition time = 20 µs!

R. Demur, R. Garioud, A. Grisard, E. Lallier, L. Leviandier, L. Morvan, N. Treps, and C. Fabre, Opt. Express 26, 13252–13263 (2018).

OPTICA Webinar, ajbarh@phys.ethz.ch

Ultrafast Laser Physics -

ETH zürich

Polychromatic illumination

x – y spatial dimension

wavelength

Hyperspectral imaging

Image position

Image position

A. J. Torregrosa, H. Maestre, and J. Capmany, *Opt. Lett.*, vol. 40, no. 22, pp. 5315–5318 (2015)

Ultrafast Laser Physics —

ETHzürich

Wavelength

Resolution

PSF: Point spread function

minis

PSF

of resolvable elements

 D_{up} = diameter of upconverted beam D_p = diameter of pump beam Ψ_{div} = far field divergence angle of the upconverted beam (sets angular res.)

952

Review

Aperture

Bluring Non-uniform resolution

- Phase matching
- Noise
- Efficiency
- Details of imaging

Vol. 11, No. 4 / December 2019 / Advances in Optics and Photonics

Advances in

and its applications 2019-2020

Ajanta Barh,^{1,*}[©] Peter John Rodrigo,²[©] Lichun Meng,²[©] Christian Pedersen,²[©] and Peter Tidemand-Lichtenberg^{2,3}[©]

— ETH zürich

Resolution

PSF: Point spread function

of resolvable elements

 D_{up} = diameter of upconverted beam D_p = diameter of pump beam Ψ_{div} = far field divergence angle of the upconverted beam (sets angular res.)

- Noise
- Efficiency
- Details of imaging

Advances in Optics and Photonics

Parametric upconversion imaging
and its applications2019-2020

Ajanta Barh,^{1,*} Peter John Rodrigo,² Lichun Meng,² Christian Pedersen,² And Peter Tidemand-Lichtenberg^{2,3}

Mid-infrared upconversion imaging using femtosecond pulses

Ashik A. S.,^{1,*} ^(b) Callum F. O'Donnell,^{2,3} ^(b) S. Chaitanya Kumar,^{2,3} ^(b) M. Ebrahim-Zadeh,^{2,3,4} ^(b) P. Tidemand-Lichtenberg,¹ ^(b) and C. Pedersen¹ ^(b)

Ultrafast Laser Physics -

2019

Application examples and progress

Application example: long-distance ranging

LIDAR technology for autonomous vehicles

1550 nm -> low-loss, eye-safe

https://metrology.news/nikon-invests-in-3d-lidar/

	InGaAs	Si-PMT
Responsivity (A/W)	1	∼10 ⁴ (Including PMT Gain)
Dark Current (nA)	0.8	1.3

Application example: long-distance ranging

LIDAR technology for autonomous vehicles

1550 nm -> low-loss, eye-safe

<u>http://www.lidarx.com/aero.html</u> P_{pulse}=110μJ, R=15 kHz, P_{pulse}=800mW

	InGaAs	Si-PMT
Responsivity (A/W)	1	~10 ⁴ (Including PMT Gain)
Dark Current (nA)	0.8	1.3

Visibility LIDAR

PPLN waveguide, η_{up} > 90%

ETH zürich

Application example: long-distance ranging

	InGaAs	Si-PMT
Responsivity (A/W)	1	∼10 ⁴ (Including PMT Gain)
Dark Current (nA)	0.8	1.3

OPTICA Webinar, ajbarh@phys.ethz.ch

Application example: MIR-OCT

World's 1st real-time MIR-OCT in the $3.5 - 5 \mu m$ range is realized using a broadband upconvertion detector

Optical coherence tomography (OCT)

- Depth imaging in highly scattering media
- High resolution (interferometric config.)
- High frame rate
- Large volumetric imaging -> high speed data acquisition

EHzürich

B-scan of 1000 lines in 3 sec

Application example: MIR-OCT

ARTICLE

Real-time high-resolution mid-infrared optical coherence tomography 2019

Niels M. Israelsen^{1,2}, Christian R. Petersen^{1,2}, Ajanta Barh¹, Deepak Jain¹, Mikkel Jensen^{1,4}, Peter Tidemand-Lichtenberg^{1,4}, Christian Pedersen^{1,4}, Adrian Podoleanu⁵ and Ole Bang^{1,2}

Ligh

Science & Applications

nature

(a) front of module

(b) back of module (c) hole in card body

Axial resolution 8.6 µm

ETHzürich

Structured ceramic sample

Current status of MIR-OCT

1st version:

- PPLN with fixed period
- Non-collinear phase-matching

2nd version:

- PPLN with chirped period
- Near-collinear phase-matching

High-resolution mid-infrared optical coherence tomography with kHz line rate 2021

NIELS M. ISRAELSEN,^{1,2,*} ^(b) PETER JOHN RODRIGO,¹ ^(b) CHRISTIAN R. PETERSEN,^{1,2} ^(b) GETINET WOYESSA,¹ ^(b) RASMUS E. HANSEN,¹ ^(b) PETER TIDEMAND-LICHTENBERG,^{1,3} ^(b) CHRISTIAN PEDERSEN,^{1,3} ^(b) AND OLE BANG^{1,2,4} ^(b)

	1st version	2nd version
A-scan rate	0.3 kHz	3 kHz
Axial resolution	8.6 µm	5.8 µm

Spin-off NORBLIS (2018) – prototypes are under development

ETHzürich

- Ceramic structure
- Paint/coating layers

What else?

Quantum: Single-photon coincidence measurement
Nature Comm. 8, 15184 (2017)

- Hyperspectral imaging: bio-tissue, cancer diagnostics

- PSF engineering: Phase contrast imaging Appl. Opt. 59, 2157-2164 (2020)

ETH zürich

Thank you!