Fall Vision Meeting, 2007

in cooperation with the Optical Society of America

September 16 - 19, 2007

Berkeley, California, USA

Fall Vision Meeting (FVM) Abstracts were published in the Journal of Vision

http://www.journalofvision.org/7/15/

Fall Vision Meeting, 2007: Abstracts

The <u>Fall Vision Meeting Meeting</u> was held September 16 - 19, 2007, in Berkeley, California in cooperation with the <u>Optical Society of America</u>. The following are the abstracts of that meeting. <u>ARVO</u> holds the <u>copyright</u> to Journal of Vision, Vol. 7, No. 15, but not to the individual abstracts in that issue. ARVO has published these abstracts as a service to the vision science community.

Color in the cortex

<u>1</u>	Shapley, Johnson, & Hawken	Single Opponent and Double Opponent Cells in Macaque Striate Cortex	
<u>2</u>	Solomon, Tailby, & Lennie	Regulation of chromatic sensitivity in the primate visual system	
<u>3</u>	Horwitz, Chichilnisky, & Albright	Analysis of non-linear cone signal combination in V1	
<u>4</u>	Mullen, Dumoulin, & Hess	Color processing in the human LGN and cortex measured with fMRI	
Cor	Contributed color talks		
<u>5</u>	Dacey, Packer, Verweij, & Schnapf	Blue-Yellow opponent receptive field structure of primate S-cones	
Contributed talk session: Color			
<u>6</u>	Buck	Testing color vision models that incorporate rod influence	

<u>7</u>	Murray, McKeefry, & Parry	What can peripheral colour vision tell us about the organisation of cone- opponent pathways?
<u>8</u>	Shinomori & Werner	The impulse response functions and interactions for S-cone increments and decrements
<u>9</u>	Baker, Trujillo, Youngpeter, Nerger, & Volbrecht	As Time Goes By: Peripheral Color Appearance Following Photobleaching
<u>10</u>	Briggs & Usrey	How colorful is corticogeniculate feedback?
Con	tributed talk session: Vision	
<u>11</u>	Chandler & Field	How much information is carried by the power and phase spectra of natural scenes?
<u>12</u>	Falconbridge, Vul, & MacLeod	Dynamics of adaptation to counterphasing gratings
<u>13</u>	Norcia	Imaging the time-course of Figure-Ground segmentation
<u>14</u>	Lauritzen, Shenhav, D'Esposito, & Silver	fMRI coherency analysis reveals feedforward progression of visual responses in human early visual cortex
<u>15</u>	Mancuso, Neitz, Hauswirth, Connor, & Neitz	Gene therapy treatment of color blindness in adult primates
<u>16</u>	Morgan, Hunter, Masella, Wolfe, Merigan, & Williams	Light Exposures Cause In Vivo Changes in Retinal Autofluorescence
Visual perception, computer graphics and display technology		
<u>17</u>	Silverstein	Advances in Display Technology: From Pixels to Perception
<u>18</u>	Adelson	Image statistics and surface perception
<u>19</u>	Malik	Modeling object recognition
<u>20</u>	Levoy	Synthetic Aperture Photography and Microscopy by Recording and Processing the 4D Light Field
Two eyes, one brain: The machinery of binocular vision		
<u>21</u>	Kara	A functional micro-architecture for binocular disparity and ocular dominance in visual cortex
<u>22</u>	Horton, Sincich, & Adams	Complete Pattern of Ocular Dominance Columns in Human Striate Cortex
<u>23</u>	Cumming & Read	Solving the stereo correspondence problem with realistic neurons

24 Banks The perceptual consequences of estimating disparity via correlation

Color illusions: implications for visual processes

<u>25</u>	Shevell	Color lessons taught by form
<u>26</u>	Kingdom	Illusions of colour and shadow
<u>27</u>	Conway	Specialized color cells in V1 and beyond
<u>28</u>	Gilchrist	What lightness illusions can tell us about the brain's visual software
Мес	hanisms of retinal development	
<u>29</u>	Reese	Determinants of Dendritic Morphology, Connectivity and Coverage in the Retina
<u>30</u>	Link, Cui, & Baye	Interkinetic nuclear migration, cell polarity, and retinal neurogenesis
<u>31</u>	Provis & Kozulin	Gene Expression in Central vs Peripheral Primate Retina - Defining the Foveal Avascular Zone
<u>32</u>	Huberman, Vargas, & Barres	Development of eye-specific projections to the lateral geniculate nucleus
Wor	kshop on computer vision applicatio	ns for the visually impaired
<u>33</u>	Peli	Electro-Optical Vision Multiplexing Devices for Vision Impairments
<u>34</u>	Manduchi	Sensors and Sensibility: Is Computer Vision Appropriate for Assistive Technology?
<u>35</u>	Beckman	Behavioural Evaluation of the Digital Sign System (DSS)
<u>36</u>	LaPierre	Current and future accessible wayfinding for the blind: From GPS systems to indoor navigation
<u>37</u>	Belongie	Project GroZi: Assistive Navigational Technology for the Visually Impaired
Visi	on science and computer games	
<u>38</u>	Bavelier, Green, & Pouget	Action videogame playing improves Bayesian inference for perceptual decision-making
<u>39</u>	Kersten	Perception, computer graphics, and video games
<u>40</u>	Allison	Video Game Background and Performance with Visual
<u>41</u>	McClay & Haas	A Real-time Brain Computer Interface for 3-D Flight Simulation
Imaging the cortex		
<u>42</u>	Gandhi & Stryker	Imaging the functional plasticity of identified cell types in visual cortex

<u>43</u>	Seidemann, Geisler, & Chen	Optimal decoding of neural population responses in the primate visual cortex
<u>44</u>	Kriegeskorte	Representational similarity analysis relating hi-res fMRI to other modalities and to computational models
<u>45</u>	Nagarajan	High-fidelity electromagnetic imaging enabled by machine learning
Usir	ng AO as a tool beyond conventional	imaging
<u>46</u>	Roorda	What psychophysical testing with adaptive optics can tell us about myopia
<u>47</u>	Werner, Choi, & Zawadzki	High-Resolution Imaging with Adaptive Optics and Optical Coherence Tomography, and Functional Changes in Retinal Disease
<u>48</u>	Flannery, Greenberg, & Kolstad	<u>Light</u>
<u>49</u>	Campbell	Adaptive optics and the future for light based therapies
Pos	ter abstracts	
<u>50</u>	Ahumada	A model for early motion compensation
<u>51</u>	Allred & Brainard	Scene complexity affects lightness constancy with respect to changes in object slant and surround reflectance
<u>52</u>	Benucci, Frazor, & Carandini	Imaging pattern adaptation in primary visual cortex
<u>53</u>	Bloj, Ruppertsberg, Banterle, & Chalmers	Characterisation of a High Dynamic Range display
<u>54</u>	Brueggemann	The hand is NOT quicker than the eye
<u>55</u>	Cantor & Schor	Modeling the Flash Pulfrich Effect
<u>56</u>	Chakraborty, Zheng, Lin, & Rauschenberger	Computational Eye Movement Model based on Adaptive Saliency Map
<u>57</u>	Chen, Martinez-Conde, Macknik, Swadlow, Alonso, & Lee	Input to cells in macaque V1 revealed with a novel grating stimulus
<u>58</u>	Dracopoulos & Westall	Reduction of the Photopic Negative Response (PhNR) in Children with childhood epilepsy on vigabatrin therapy
<u>59</u>	Drga & Harris	The use of horizontal disparity in distance perception in sparse, dark environments
<u>60</u>	D'Souza, Lee, & Frahm	Do chromatic responses in V1 match retinal output or perceptual performance?
<u>61</u>	Elze, Tanner, Lochmann, & Becker	LCD Monitors in Vision Science

<u>62</u>	Farini, Arrighi, & Gheri	The relevance of colour in web pages readability
<u>63</u>	Francis	Cortical dynamics of figure-ground segmentation: Shine through
<u>64</u>	Frazor, Benucci, & Carandini	Independence of retinotopy and orientation selectivity in the population responses of area V1
<u>65</u>	Fukushima, Torii, & Ukai	The relationship between CA/C ratio and individual differences in dynamic accommodative responses while viewing stereoscopic images
<u>66</u>	Reza, Abdollahi, Attarchi, & Esfe	Central Corneal Thickness and Medically Uncontrolled primary open angel glaucoma
<u>67</u>	Hunter, Morgan, Wolfe, Sparrow, & Williams	Decrease and Recovery of in vitro Retinal Pigment Epithelium Autofluorescence Intensity in Response to Visible Light
<u>68</u>	Ivanov & Werner	Colour and spatial cue for action: Subliminal colour cue effects motor behaviour
<u>69</u>	Johnson, Wu, Edwards, & Copenhagen	Vesicular Glutamate Release From Photoreceptors is Required for Maintenance of Synapses in the Outer Retina
<u>70</u>	Jonnal, Cense, Gao, & Miller	Sight seeing: in vivo detection of human cone phototransduction
<u>71</u>	Juricevic, Kennedy, & Patel	Perception of Perspective Pictures: Vision's ART theory Approximation
<u>72</u>	Katzner, Nauhaus, Benucci, Bonin, Ringach, & Carandini	The local field potential in primary visual cortex: how local is it?
<u>73</u>	Klein & Levi	Problems with modeling detection and identification of signals in noise
<u>74</u>	Koenig & Hofer	The absolute threshold of cone vision is relatively insensitive to the criteria for seeing
<u>75</u>	Krishnamoorthy, Pitchaiah, Baloni, & Dhingra	In Vivo Labeling of Mammalian Cone Photoreceptors by Intravitreal Injection of Fluorescently Tagged Peanut Agglutinin - A Potential Tool for Assessing Photoreceptor Degeneration in Humans
<u>76</u>	Krishnaswamy & Owen	The Statistical Properties of Images as Determinants of Ganglion Cell Activity in the Vertebrate Retina
<u>77</u>	Kuchenbecker, Carroll, Neitz, & Neitz	Computer Model of Color Vision Circuit Parallels Psychophysical Responses to Single Cone Photoreceptor Stimulation by a 550 nm Wavelength Light
<u>78</u>	Larson & Chandler	Explaining crypsis and information content in the visual pathway using statistical properties of animal camouflage and natural scenes
<u>79</u>	Li, Mishra, & Roorda	Simulation and experimental demonstration of a linearized adaptive optics control loop
<u>80</u>	Lin & Han	Self-construal priming modulates visual activity underlying global/local

perception

<u>81</u>	Martin, Dubis, Carroll, & Krauskopf	Estimation of L: M Cone Ratio from ERG, Adaptive Optics, and Color Naming Methods
<u>82</u>	Mauck, Kuchenbecker, Pawela, Hyde, Hudetz, Neitz, & Neitz	Functional Magnetic Resonance Imaging of Neural Activity in Rat CNS in Response to Chromatic Stimuli
<u>83</u>	McDermott, Yasuda, Rajewale, & Webster	The perceptual balance of color
<u>84</u>	McKee, Wade, Pettet, Vildavski, Appelbaum, & Norcia	Disparity processing in the human brain imaged with high density EEG
<u>85</u>	McKeefry, Burton, Vakrou, Barrett, & Morland	Deficits in speed perception induced by transcranial magnetic stimulation of cortical area V5/MT+
<u>86</u>	Mihashi	Fluctuations of accommodation and aberrations for both eyes with or without cycloplegia
<u>87</u>	Nagai & MacLeod	Dependence of perceived brightness on retinal transient signals: is there a temporal Craik-Cornsweet effect?
<u>88</u>	Nasirzade	Controlling the Single-jointed Flexible Arm with Fuzzy Method
<u>89</u>	Nauhaus, Benucci, Frazer, Carandini, & Ringach	The degree of orientation selectivity of neurons in V1 depends on the local orientation map
<u>90</u>	Okiyama, Segawa, & Uchikawa	Effects of Visual Attention on Luminance and Chromatic Contrast Sensitivities in Foveal Vision
<u>91</u>	Olzak & Kramer	How do second-order mechanisms interact?
<u>92</u>	Ozolinsh	Dynamics and accuracy of eye aberration measurements
<u>93</u>	Palomares, Norcia, Wade, Pettet, Vildavski, & Appelbaum	On the differences and similarities between real and implied motion: a high- density EEG study
<u>94</u>	Peli & Vargas-Martin	Design and Implementations of In-the-Spectacle-Lens Bioptic Telescopes
<u>95</u>	Perez, Manzanera, & Artal	Combined effect of scattering and spherical aberration on contrast sensitivity
<u>96</u>	Popple & Levi	Attentional blinks as errors in temporal binding
<u>97</u>	Powers	Binocular vision and Lasik: Improvement following visual skills training
<u>98</u>	Renninger, Verghese, & Fletcher	Efficienct Eye Movements for Low Vision Rehabilitation
<u>99</u>	Richters & Eskew	Hand-eye correlation: hand movements can alter color judgments
<u>100</u>	Robinson & de Sa	Measuring White's illusion during brief stimulus displays

101 Rokem, Sanghvi, & Silver	Motion adaptation bandwidth anisotropies in the human visual system
<u>102</u> Saegusa & Ukai	Effect of Gaze Direction on Adaptation to a Stereo-Slant
103 Sasaki, Yotsumoto, Chan, Vasios, Nanez, Shimojo, Watanabe, & Bonmassar	Brain activity related to consolidation of perceptual learning during sleep
104 Schreiber	Retinal Correspondence and the Theoretical Horopter
<u>105</u> Shinomori, Hamaguchi, Miyazawa, Oda, Tsurumi, Onouchi, & Nakauchi	Functional spectral filter for optical simulation of dichromats in color discrimination
106 Shinomori, Yokota, & Nakauchi	Color naming and color categorization by dichromats.
107 Siwinska, Wozniak, Paras, & Webster	Local vs. global distortions in face adaptation
108 Stockman, Crowther, & Ripamonti	Silent surrounds: the M-cones gate the S-cone input to luminance
<u>109</u> Tanahashi, Ujike, & Ukai	Visual rotation axis and posture relative to the gravity axis: effects on circular vection
<u>110</u> Tian	Nonlinear Choroidal Responses to Imposed Defocus in Young Chick Eyes
111 Vedamurthy, Nguyen, & Schor	Cross-coupling between convergence and accommodation is optimized for a broad range of directions and distances of gaze
112 Westall & Cortese	GABA enhancing antiepileptic drug safer for human developing vs. mature retina
113 Yamauchi, Nakano, & Uchikawa	Comparison between an algebraic method and the maximum saturation method to estimate individual color matching functions
114 Yoonessi, Kingdom, & Alqawlaq	Is color patchy?
115 Yotsumoto	Trained location-specific activity changes during sleep after training of a visual task
116 Zhang, Tiruveedhula, Sincich, Horton, & Roorda	Adaptive optics scanning laser ophthalmoscope (AOSLO) for precise visual stimulus presentation
117 Zhang, Cantor, & Schor	Temporal Interaction in Perisaccadic Mislocalization
Boynton lecture	
118 Jacobs	The role of comparative studies in understanding primate color vision