Illumination Modeling: Simulation and Perception of Lit and Unlit Objects (IM)

Workshop at

Frontiers in Optics 2008, OSA's 92nd Annual Meeting and Exhibit

Monday, October 20, 2008 Rochester Riverside Convention Center, Rochester, NY, USA

Housing Deadline: September 17, 2008 Registration Deadline: September 25, 2008

About Illumination Modeling

There are an increasing number of applications that require a good understanding of ambient lighting and illumination of objects or scenes to create a desired effect or appearance. Applications such as 3-D virtual environment visualization, architectural lighting, computer animation and automotive lighting are some of the areas that deal with the effect of ambient lighting and a lit model's appearance. Complimentary to understanding such effects is the need for sources and optical designs to create the desired illumination while understanding human perceptual characteristics.

This workshop aims at bringing together communities such as lighting, computer graphics, color technologists, optical designers, light sources and virtual reality towards the common goal of design, production and understanding of ambient lighting and a lit model's appearance.

Invited Speakers

FMC2, Modulating and Demodulating Projected Light, Oliver Bimber; Bauhaus-Univ. Weimar, Germany.

FMC6, Accurate Lit-Appearance Modeling of Illumination Systems, *R. John Koshel; Photon Engineering LLC, USA, and College of Optical Sciences, Univ. of Arizona, USA.*

FMJ1, **An Overview of the Non-Visual Effects of Retinal Light Exposure,** *Mark S. Rea, Mariana G. Figueiro; Rensselaer Polytechnic Inst., USA.*

FMJ3, Vision at Mesopic Light Levels, Alan L. Lewis; EPRI Lighting Res. Office, USA.

2008 Meeting Chairs

Anurag Gupta, *Optical Res. Associates, USA* Hong Hua, *Univ. of Arizona, USA*

Committee Members

G. Groot Gregory, Optical Res. Associates, USA Jannick Rolland, Univ. of Central Florida, USA John Koshel, Photon Engineering LLC and College of Optical Sciences, Univ. of Arizona, USA Mark Rea, Rensselaer Polytechnic Inst., USA

Sponsor: The Optical Society

Illumination Modeling Program Committee

Program Chairs

Anurag Gupta, Optical Res. Associates, USA Hong Hua, Univ. of Arizona, USA

Committee Members

G. Groot Gregory, Optical Res. Associates, USA Jannick Rolland, Univ. of Central Florida, USA John Koshel, Photon Engineering LLC and College of Optical Sciences, Univ. of Arizona, USA Mark Rea, Rensselaer Polytechnic Inst., USA

Meeting Topics to Be Considered

The Illumination Modeling Workshop aims at bringing together communities such as lighting, computer graphics, color technologists, optical designers, light sources and virtual reality towards the common goal of design, production and understanding of ambient lighting and a lit model's appearance.

We welcome submissions in the following areas:

- Simulation of ambient lighting and rendering of lit scenes and objects.
- Applications in virtual reality and animation.
- Human factors in lighting and lighting perception.
- Aesthetic design for buildings.
- Light sources for architectural and vehicular lighting.
- Optical design for lighting applications and non-imaging optics.
- Material properties of paints and other optical surfaces and volumes.
- BSDF modeling, measurement and application.
- Color in lighting applications.

Illumination Modeling Invited Speakers

FMC2, Modulating and Demodulating Projected Light, Oliver Bimber; Bauhaus-Univ. Weimar, Germany

FMC6, Accurate Lit-Appearance Modeling of Illumination Systems, *R. John Koshel*^{1,2}; ¹Photon Engineering LLC, USA, ²College of Optical Sciences, Univ. of Arizona, USA.

FMJ1, **An Overview of the Non-Visual Effects of Retinal Light Exposure,** *Mark S. Rea, Mariana G. Figueiro; Rensselaer Polytechnic Inst., USA*

FMJ3, Vision at Mesopic Light Levels, Alan L. Lewis; Electric Power Res. Inst. (EPRI) Lighting Res. Office, USA

Exhibitor Information

For information about exhibitors, please see the archive for FiO 2008/LS XXIV.

Agenda of Sessions — Monday, October 20

	Lilac Ballroom North	Highland A	Highland B	Highland C	Highland D	Highland E			
7:00 a.m.–6:00 p.m.	Registration, Galleria, Rochester Riverside Convention Center								
8:00 a.m.–10:00 a.m.									
8:00 a.m.–12:00 p.m.	2008 Joint	FiO/LS Awards Ceremon	y and Plenary Session, 1	Lilac Ballroom North and Sot	ıth, Rochester Riverside Conv	ention Center			
10:00 a.m.–10:30 a.m.		Coffee B	Break, Lilac Ballroom Foyer,	Rochester Riverside Convent	ion Center				
10:30 a.m.–12:30 p.m.									
12:00 p.m2:00 p.m.	12:00 p.m2:00 p.m. SMA: Laser Science Symposium on Undergraduate Research Posters, Riverside Court, Rochester Riverside Convention Center								
12:30 p.m1:30 p.m.	Lunch Break (on your own)								
1:30 p.m.–3:30 p.m.	SMB: Schawlow- Townes Symposium on 50 Years of the Laser: The Birth of the Laser	FMA: Nonclassical Light (ends at 3:15 p.m.)	SMC: Laser Science Symposium on Undergraduate Research I (2:00 p.m4:00 p.m.)	FMB: Intense Field Science (ends at 2:45 p.m.)	FMC: Illumination I: Modeling, Ray Tracing and Rendering	FMD: General Optical Sciences I			
3:30 p.m4:00 p.m.		Coffee B	Break, Lilac Ballroom Foyer,	Rochester Riverside Convent	ion Center				
4:00 p.m.–6:00 p.m.	SMD: Schawlow- Townes Symposium on 50 Years of the Laser: Looking to Tomorrow	FMH: Photon Sources (ends at 5:45 p.m.)	SME: Laser Science Symposium on Undergraduate Research II (4:30 p.m6:30 p.m.)	FMI: Femtosecond Surface Science (ends at 6:15 p.m.)	FMJ: Illumination II: Vision and Measurement	FMK: General Optical Sciences II			
6:30 p.m8:30 p.m.	OSA	Student Member Welco	me Reception, Abilene, 15	53 Liberty Pole Way, Downto	wn Rochester, Phone: 585.232	2.3230			
6:30 p.m. –8:30 p.m. OSA Student Member Welcome Reception, Abilene, 153 Liberty Pole Way, Downtown Rochester, Phone: 585.232.3230									

Agenda of Sessions

Lilac Ballroom North	Highland A	Highland B	Highland C	Highland D	Highland E
1:30 p.m.–3:30 p.m. SMB • Schawlow-Townes Symposium on 50 Years of the Laser: The Birth of the Laser Robert W. Boyd; Univ. of Rochester, USA, Presider Martin Richardson; CREOL, College of Optics and Photonics, Univ. of Central Florida, Presider	1:30 p.m3:15 p.m. FMA • Nonclassical Light Jiangrong "Frank" Cao; Canon USA Inc., Presider	F 2:00 p.m4:00 p.m. SMC • Laser Science Symposium on Undergraduate Research I Jenny Magnes; Vassar College, USA, Presider See Undergraduate Research Symposium program in registration bag.	i O 1:30 p.m2:45 p.m. FMB • Intense Field Science Jeffrey Squier; Colorado School of Mines, USA, Presider	1:30 p.m.–3:30 p.m. FMC • Illumination I: Modeling, Ray Tracing and Rendering Hong Hua; Univ. of Arizona, USA, Presider	1:30 p.m.–3:30 p.m. FMD • General Optical Sciences I Gregory Quarles; VLOC, USA, Presider
SMB1 • 1:30 p.m. Invited Initiation and Development of the Laser, Charles H. Townes; Univ. of California at Berkeley, USA. A broad discussion of initia- tion and development of amplification by stimulated emission of radiation (lasers, masers). The field provides an example of how unexpected and tremendously	FMA1 • 1:30 p.m. Tutorial Nonclassical Light for Quantum Infor- mation Science, H. Jeff Kimble; Caltech, USA. Over the past several decades, the Quantum Optics community has gener- ated a zoology of manifestly quantum or nonclassical states of the electromagnetic field. Beyond a historical significance in		FMB1 Paper Withdrawn FMB2 • 1:30 p.m. The Formation of Metallic Nanoclus- ters at the Surface of Natural Silicates Induced by CO ₂ Laser Radiation, Anel F. Mukhamedgalieva, Anatolii M. Bondar;	FMC1 • 1:30 p.m. Locating Illumination Sources from Lighting on Planar Surfaces in Paintings: An Application to Georges de la Tour and Caravaggio, David G. Stork; Ricoh Innova- tions, USA. We used maximum-likelihood methods to estimate the location and number of illuminants in tableaus in realist	FMD1 • 1:30 p.m. Simple Models for Laser-Induced Damage of KH ₂ PO ₄ Crystals by Nanosecond Pulses , Guillaume Duchateau, Anthony Dyan; CEA, Ctr. d'Etudes du Ripault, France. We present two approaches based on the heating of nanometric model defects. They allow one to find experimental

field. Beyond a historical significance in important technology and science emerge physics, nonclassical light is playing a leading role in Ouantum Information Science. including for quantum computation, communication, and metrology. My tutorial will provide an overview of nonclassical light, from generation to identification to application.

H. Jeff Kimble is the William L. Valentine Professor and Professor of Physics at the California Institute of Technology. He completed his doctoral degree in 1977 at the University of Rochester under the supervision of Professor Leonard Mandel. After spending two years as a staff scientist at the General Motors Research Laboratories, he joined the faculty at the University of Texas at Austin in 1979, where he eventually held the Sid Richardson Regents' Chair of Physics before moving to Caltech in 1989. The

F. Mukhamedgalieva, Anatolii M. Bondar; Moscow State Mining Univ., Russian Federation. The continuous and pulsed CO, laser irradiation (105-107 W/cm2) of silicates (nepheline - Na[AlSiO_], rodonite - CaMn₄[Si₅O₁₅], zircon - ZrSiO₄ etc.) leads to the creation of metallic and silicon nanoclusters at the surface.

FMB3 • 1:45 p.m.

Ultra-Intense 35fs Laser-Matter Interaction Physics in Nanostructured Ni-Nanowire Targets, Robin S. Marjoribanks1, Ludovic Lecherbourg¹, Patrick Audebert², Jean-Paul Geindre², Brett Teeple¹, Marina Servol^{1,3}, Anne Héron⁴, Jean-Claude Adam⁴, Gabor Kulcsár¹, John Sipe¹, Paul Forrester¹, Jean-Claude Kieffer³, Luke McKinney¹, Simon Le Moal^{1,5}, Hart Levy¹; ¹Univ. of Toronto, Canada, ²Lab pour l'Utilisation des Lasers Intenses (LULI), France, ³Inst. Natl. de la Recherche Scientifique, Énergie, Matériaux et Télécommunications (INRS), Canada, ⁴Ctr. de Physique Théorique (CPhT), France, ⁵Ecole des Mines de Paris, France. Nickel nanowires present >90% absorption in an absorption depth ~1 µm, making efficient x-ray converters at high energy-densities. We present new theoretical and experimental results for intensities from small-signal up to relativistic ultrafast pulses.

number of illuminants in tableaus in realist paintings from the pattern of illuminance on planar walls and floors to test for artists' use of optical projections.

FMC2 • 1:45 p.m. Invited

Modulating and Demodulating Projected Light, Oliver Bimber; Bauhaus-Univ. Weimar, Germany. Projector-camera systems allow measuring and compensating the modulation of projected light on surfaces that are not optimized for projections. This enables new applications in different domains, such as entertainment, visualization, film production and many more.

FMD2 • 1:45 p.m.

these defects is provided.

The Effects of Radiation Waves on Dark Stripe Dynamics, Christopher Barsi, Jason W. Fleischer; Princeton Univ., USA. We study the evolution of a narrow dark stripe in a nonlinear defocusing medium. It is shown that radiation waves are shed during the evolution and should influence the interaction force between pairs of stripes.

results such as a particular scaling law.

Information about the physical nature of

from basic research exploration.

Lilac Ballroom North	Highland A	Highland B	Highland C	Highland D	Highland E			
FiO								
SMB • Schawlow-Townes Symposium on 50 Years of the Laser: The Birth of the Laser—Continued	FMA • Nonclassical Light—Continued	SMC • Laser Science Symposium on Undergraduate Research I—Continued	FMB • Intense Field Science—Continued	FMC • Illumination I: Modeling, Ray Tracing and Rendering—Continued	FMD • General Optical Sciences I—Continued			
SMB2 • 2:00 p.m. Invited The World in a New Light, Steven Chu ^{1,2} ; ¹ Lawrence Berkeley Natl. Lab, USA, ² Univ. of California at Berkeley, USA. This fantastic light, which unified electronics with the quantum world, transformed our ability to measure and control matter and energy with unprecedented precision. After 50 years of a storied history, the best is yet to come.	general areas of his research are quantum information science and the quantum dynamics of open systems, including quantum measurement, cavity quantum electrodynamics, and the realization of quantum networks. Professor Kimble is a Fellow of the American Association for the Advancement of Science, the American Physical Society, and the Optical Society of America, and is a Member of the National Academy of Sciences.		FMB4 • 2:00 p.m. Invited Trapping and Destruction of Long Range High Intensity Optical Filaments by Molecular Quantum Wakes in Air, S. Varma, Y. H. Chen, Howard Milchberg; Univ. of Maryland, USA. We report the first observation of the strong trapping and ex- tinguishing effects of quantum molecular rotational wavepackets in atmospheric air on long range filamentary propagation of intense femtosecond laser pulses.		FMD3 • 2:00 p.m. Nonlinear Optics with Radio Frequency Field, Hebin Li ¹ , Vladimir A. Sautenkov ¹ , Michael M. Kash ^{1,2} , Yuri V. Rostovtsev ¹ , Marlan O. Scully ¹ ; Texas A&M Univ., USA, ² Dept. of Physics, Lake Forest College, USA. Performing experiments with Rb-atoms and RF fields, we have demonstrated several nonlinear effects, such as multi- photon transitions and excitation of coher- ence using far-detuned field with different time-shape pulses. Our results agree with our theoretical predictions.			
	FMA2 • 2:15 p.m. Resonant Enhancement of Quantum SFG, Irfan Ali-Khan, S. Sensarn, G. Y. Yin, S. E. Harris; Stanford Univ., USA. By resonating the sum frequency, the quan- tum term for sum frequency generation with incoming biphotons is enhanced by a factor of 12.			FMC3 • 2:15 p.m. Analysis of Second Order Light Fields in Closed 3-D Spaces, Alexander A. Mury, Sylvia C. Pont, Jan J. Koenderink; Physics of Man, Dept. of Physics and Astronomy, Utrecht Univ, Netherlands. We present a method for measurement and reconstruc- tion of second order approximations of light fields in closed spaces. We visual- ized their structure using light tubes and rendered objects at several points along a tube.	FMD4 • 2:15 p.m. Precise Modal Decomposition in Multi- mode Optical Fibers by Maximizing the Sum of Modal Power Weights, Zhuo Jiang ^{1,2} , John R. Marciante ^{1,3} , ¹ Lab for Laser Energetics, Univ. of Rochester, USA, ² Dept. of Physics and Astronomy, Univ. of Rochester, USA, We determine accurate modal power weights of the optical field in multimode fibers without precise knowledge of fiber or imaging system parameters by maxi- mizing the sum of modal power weights. Experimental results will be reported.			
		1	NOTES					

Lilac Ballroom North	Highland A	Highland B	Highland C	Highland D	Highland E			
FiO								
SMB • Schawlow-Townes Symposium on 50 Years of the Laser: The Birth of the Laser—Continued	FMA • Nonclassical Light—Continued	SMC • Laser Science Symposium on Undergraduate Research I—Continued	FMB • Intense Field Science—Continued	FMC • Illumination I: Modeling, Ray Tracing and Rendering—Continued	FMD • General Optical Sciences I—Continued			
SMB3 • 2:30 p.m. Invited My Time with Charlie, James P. Gordon; Consultant, Bell Labs, Alcatel-Lucent, USA. Quantum electronics came into being with the success of the first (ammonia beam) maser. I will recall my time at Columbia University where the maser was created, and the ideas that made it possible.	FMA3 • 2:30 p.m. Strongly Correlated Photon Transport in One-Dimensional Systems, Jung-Tsung Shen, Shanhui Fan; Stanford Univ, USA. We show that two-photon transport is strongly correlated in one-dimensional waveguide coupled to a two-level system. Moreover, we show that the two-level system can induce effective attractive or re- pulsive interactions in space for photons.		FMB5 • 2:30 p.m. Theory and Modeling of the Absorp- tion of Laser Light in Nanostructured Metallic Nanowire ("Velvet") Surfaces, Ludovic Lecherbourg', Brett Teeple', Patrick Audebert ² , Jean-Paul Geindre ² , Jean-Claude Adam ³ , Anne Héron ³ , John Sipe ¹ , Gabor Kulcsàr ¹ , Simon Le Moal ⁴ , Robin S. Mar- joribanks ¹ ; ¹ Univ. of Toronto, Canada, ² Lab pour l'Utilisation des Lasers Intenses (LULI), CEA, CNRS, Ecole Polytechnique, France, ³ Ctr. de Physique Théorique (CPhT), CEA, CNRS, Ecole Polytechnique, France, ⁴ Ecole des Mines de Paris, France. Nanostruc- tured metal targets exhibit low-intensity	FMC4 • 2:30 p.m. Estimation of Illuminance Flow over Anisotropic Surfaces for Arbitrary Viewpoints, Stefan M. Karlsson, Sylvia C. Pont, Jan J. Koenderink; Physics of Man, Dept. of Physics and Astronomy, Utrecht Univ., Netherlands. The theory of illuminance flow estimation by structure tensors is generalized for oblique viewing of anisotropic texture. Previous theory is revised using general matrix formulations and predictions are compared with results on rendered images.	FMD5 • 2:30 p.m. Goos-Hänchen Effect for High-Loss Materials, Jörg B. Götte, Andrea Aiello, J. P. Woerdman; Leiden Univ., Netherlands. We extend the analysis of the Goos-Hänchen shift on bare surfaces to high losses. In contrast to the low-loss case, for high losses the Goos-Hänchen shifts for metals and dielectrics are similar.			
	FMA4 • 2:45 p.m. Classical and Quantum Correlations in Waveguide Lattices, Yaron Bromberg ¹ , Yoav Lahini ¹ , Roberto Morandotti ² , Yaron Silberberg ¹ ; ¹ Weizmann Inst. of Science, Is- rael, ² Inst. Natl. de la Recherche Scientifique, Canada. The propagation of correlated photon pairs in a lattice of coupled wave- guides is studied. We calculate the evolu- tion of quantum correlations along the lattice, and experimentally demonstrate a classical analogue using two incoher- ent sources.		linear optical absorption > 95%. Is such absorption also possible for ultra-intense femtosecond laser pulses? Analytic theory (low intensities) and particle-in-cell simu- lations (high intensities) show similarities and remarkable differences.	FMC5 • 2:45 p.m. Differential Ray Tracing for an Improved Simulation of Incoherent Illumination Systems, Oliver Stolz, Norbert Lindlein; Inst. of Optics, Information and Photonics, Max Planck Res. Group, Univ. of Erlangen- Nuremberg, Germany. Analyzing intensity distributions is of great importance for today's illumination systems design. Con- trary to Monte-Carlo techniques, differen- tial ray tracing possesses great potential to improve simulation efficiency by reducing computational time while concurrently showing accurate results.	FMD6 • 2:45 p.m. Goos-Hänchen Shift on Flat and Not- So-Flat Metal Surfaces, M. Merano, A. Aiello, G. W. 't Hooft, M. P. van Exter, E. R. Eliel, J. P. Woerdman; Huygens Lab, Leiden Univ., Netherlands. We report the first observation of the Goos-Hänchen shift in metallic reflection. The shift is found to be insensitive to surface flatness but it depends on the microscopic roughness of the metal surface.			

NOTES

ilac Ballroom North	Highland A	Highland B	Highland C	Highland D	Highland E
		Fi	0		
	FMA • Nonclassical Light—Continued	SMC • Laser Science Symposium on Undergraduate Research I—Continued		FMC • Illumination I: Modeling, Ray Tracing and Rendering—Continued	FMD • General Optical Sciences I—Continued
	FMA5 • 3:00 p.m. Security of a Discretely Signaled Con- tinuous Variable QKD Protocol against Collective Attacks, Zheshen Zhang ^{1,2} , Paul L. Voss ^{1,2} , 'Georgia Tech, Ctr. Natl. de la Recherche Scientifique, France, ² School of Electrical and Computer Engineering, Georgia Tech, USA. We prove security against collective attacks of a four-state discretely signaled continuous variable quantum key distribution protocol with and without post-selection. This protocol is compatible with optical networks and high speed coding techniques.			FMC6 • 3:00 p.m. Invited Accurate Lit-Appearance Modeling of Illumination Systems, R. John Koshel ^{1,2} ; ¹ Photon Engineering LLC, USA, ² College of Optical Sciences, Univ. of Arizona, USA. Lit-appearance modeling of illumination systems is the determination of what that system looks like before costly fabrica- tion. Methods using ray-tracing software will be presented through examples: spot projection, pupil sampling, and luminance modeling.	FMD7 • 3:00 p.m. Partially Coherent Cyclostation Pulses in Young's Interference Exp ment, Robert W. Schoonover', Brynm Davis', Randy A. Bartels', P. Scott Cara ¹ Univ. of Illinois at Urbana-Champe USA, ² Colorado State Univ., USA. You interference experiment is used to ana the statistical properties of a certain of of spatially partially coherent, cyclostat ary, optical fields.
		NO CAMERAS			FMD8 • 3:15 p.m. Closed Form Formula for Mie Scatter of Generalized Gaussian Beams, Ni J. Moore, Miguel A. Alonso; Inst. of Op Univ. of Rochester, USA. A closed fi formula is found for the Mie scatte coefficients of an incident generali Gaussian beam with any numerical a ture. This formula takes the simple for multipoles evaluated at a complex point

Lilac Ballroom North	Highland A	Highland B	Highland C	Highland D	Highland E		
FiO							
4:00 p.m6:00 p.m. SMD • Schawlow-Townes Symposium on 50 Years of the Laser: Looking to Tomorrow Robert W. Boyd; Univ. of Rochester, USA, Presider Martin Richardson; CREOL, College of Optics and Photonics, Univ. of Central Florida, Presider	4:00 p.m.–5:45 p.m. FMH • Photon Sources Jason Fleischer; Princeton Univ., USA, Presider	4:30 p.m.–6:30 p.m. SME • Laser Science Symposium on Undergraduate Research II David Sukow; Washington and Lee Univ., USA, Presider	4:00 p.m.–6:15 p.m. FMI • Femtosecond Surface Science Oren Cohen; JILA, Univ. of Colorado, USA, Presider	4:00 p.m.–6:00 p.m. FMJ • Illumination II: Vision and Measurement Anurag Gupta; Optical Res. Associates, USA, Presider	4:00 p.m.–6:00 p.m. FMK • General Optical Sciences II Jason Schmidt; Air Force Inst. of Technology, USA, Presider		
SMD1 • 4:00 p.m. Invited From Millisecond to Attosecond Laser Pulses, Nicolaas Bloembergen; Univ. of Arizona, USA. Abstract not available.	FMH1 • 4:00 p.m. Four-Wave Mixing in a Birefringent Semiconductor Waveguide for Cor- related Photon Generation, Daniel J. Rogers ¹ , Julius Goldhar ¹ , Christopher J. K. Richardson ¹ , Charles W. Clark ² , ¹ Univ. of Maryland, USA, ² NIST, USA. We demonstrate birefringent phase-matched four-wave mixing in a III-V semicon- ductor waveguide as a potential source of correlated and ultimately entangled photon pairs for high-speed quantum key distribution.	See Undergraduate Research Symposium program in registration bag.	FMI1 • 4:00 p.m. Invited Ultrafast Spin-Dependent Carrier Dy- namics in Ferromagnetic Thin Films, Martin Weinelt ^{1,2} ; ¹ Max-Born-Inst., Ger- many, ³ Freie Univ. Berlin, Germany. Spin-dependent carrier dynamics in ferromagnetic thin films is studied by time-, energy-, angle-, and spin-resolved photoelectron spectroscopy. We will dis- cuss spin-flip scattering and its relation to femtomagnetism.	FMJ1 • 4:00 p.m. Invited An Overview of the Non-Visual Effects of Retinal Light Exposure, Mark S. Rea, Mariana G. Figueiro; Rensselaer Polytechnic Inst., USA. Comparisons will be made between light as a stimulus to the visual system and light as a stimulus to non- visual, biological effects that affect human behavior and well-being.	FMK1 • 4:00 p.m. Conservation of Angular Momentu in Mie Scattering, David P. Haefn Sergey Sukhov, Aristide Dogariu; CREC College of Optics and Photonics, Un of Central Florida, USA. We show th the spin angular momentum carried the incident wave is distributed betwe spin and orbital momentum of the wa scattered from a spherically symmetr scattering potential resulting in a spin power flow.		

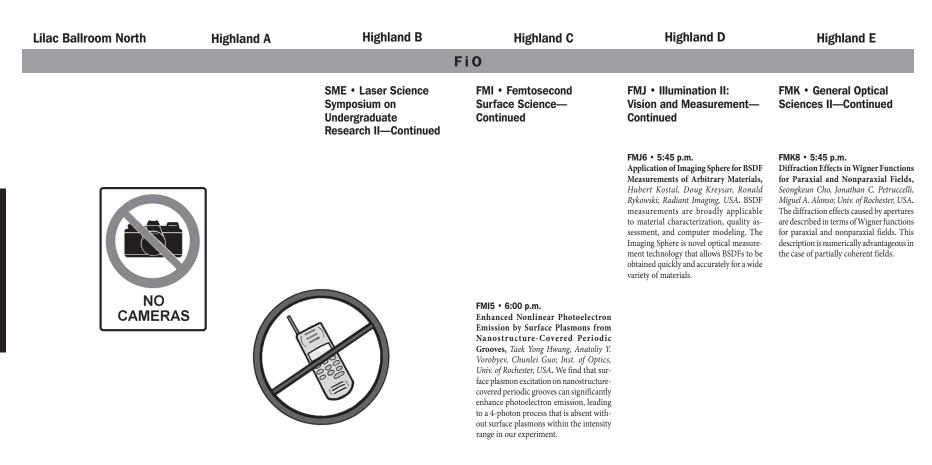
FMH2 • 4:15 p.m. Towards Hyperentanglement via Semiconductor Two-Photon Emission, Alex Hayat, Pavel Ginzburg, Pavel Gurevich,

David Neiman, Serge Rosenblum, Meir Orenstein, Technion - Israel Inst. of Technology, Israel. We investigate a new phenomenon of semiconductor two-photon emission presenting the first experiments. This allows implementation of compact highly-efficient room-temperature sources of entangled (for microcavity interband transitions) and hyperentangled (for intersubband transitions) photons.

FMK2 • 4:15 p.m.

Study of the Persistent Laser-Induced Change in the Index of Refraction in Pr³⁺-Doped Silicate Glass Using Pump-Probe X-Scan Technique, Abdullatif Y. Hamad, Seong Heon Kim, Southern Illinois Univ. Edwardsville, USA. The profile, size, and magnitude of the change in the refraction index in Pr³⁺-doped silicate glass were determined using the x-scan technique. The index profile was dependent on the exposure time of the pump beam.

Lilac Ballroom North	Highland A	Highland B	Highland C	Highland D	Highland E			
FiO								
MD • Schawlow-Townes Symposium on 50 Years If the Laser II: Looking to omorrow—Continued	FMH • Photon Sources— Continued	SME • Laser Science Symposium on Undergraduate Research II—Continued	FMI • Femtosecond Surface Science— Continued	FMJ • Illumination II: Vision and Measurement— Continued	FMK • General Optical Sciences II—Continued			
MD2 • 4:30 p.m. Invited rom Gas Lasers and Tunable Raman asers to Quantum Cascade Lasers, <i>umar Patel; Pranalytica Inc, USA.</i> I will escribe my involvement in lasers from 961 to present, encompassing high power rubon dioxide lasers, tunable spin-flip aman lasers, and now high power CW pom temperature quantum cascade lasers and their applications.	FMH3 • 4:30 p.m. Invited From a Single-Photon Source to a Single-Ion Laser, Francois Dubin, Carlos Russo, Helena G. Barros, Andreas Stute, Piet Schnidt, Rainer Blatt; Univ. of Innsbruck, Austria. A single Ca ⁺ ion is trapped in a high finesse cavity. Under continuous excitation, our single-ion device shows signatures of a quantum laser. Under pulsed excitation, it acts as an efficient source of single photons.		FMI2 • 4:30 p.m. Invited Real Time Electronic Structure Inves- tigated by Femtosecond Time - and Angle-Resolved Photoemission Spec- troscopy, Uwe Bovensiepen; Freie Univ. Berlin, Fachbereich Physik, Germany. The real time evolution of electronic structure is analyzed for the Mott insulator TaS ₂ and the charge density wave compound TbTe ₃ . The results facilitate unprecedented insight into the impact of collective modes and electronic correlation.	FMJ2 • 4:30 p.m. A Perfect Illumination Spectral Ratio Effect on Microsaccades and Drift, Rich- ard Friedhoff, James Schirillo ^{1,2} , 'Tandent Vision Science, Inc., USA, ² Wake Forest Univ, USA. Can eye movements differenti- ate illumination versus material borders? Stimuli containing a material edge bisected an illumination edge that contained a correct or incorrect spectral ratio. Micro- saccades and drift were longer only across plausible illumination borders.	FMK3 • 4:30 p.m. Topological Reactions of Correlation Vortices , <i>Yalong Gu, Greg Gbur; Univ</i> <i>of North Carolina at Charlotte, USA</i> The topological reactions of correlation vortices are investigated. They sugges the possible use of correlation vortices a a probe of the statistical properties of a field or a medium.			
				FMJ3 • 4:45 p.m. Invited Vision at Mesopic Light Levels, Alan L. Lewis; Electric Power Res. Inst. (EPRI) Lighting Res. Office, USA. Lighting design- ers use photopic photometry even when applications call for lower adaptation lev- els. There is a need for a mesopic unit that will adequately predict visual performance for outdoor use under today's spectrally diverse lamps.	FMK4 • 4:45 p.m. General Theory for Self-Healing Beam Applied to a Caustic Field, Sabin. Chávez-Cerda ¹ , Marcelino Anguiano-Mo rales ² , Marcelo D. Iturbe-Castillo ¹ ; ¹ INAOE Mexico, ² Ctr. de Investigaciones en Optica Mexico. We present a general theory o self-healing beams and demonstrat that caustic optical fields generated b an axicon illuminated with a cylindrica wavefront are self-healing when they ar partially obstructed by an opaque object			
		Ν	IOTES					


Lilac Ballroom North	Highland A	Highland B	Highland C	Highland D	Highland E
		1	FiO		
SMD • Schawlow-Townes Symposium on 50 Years of the Laser II: Looking to Tomorrow—Continued	FMH • Photon Sources— Continued	SME • Laser Science Symposium on Undergraduate Research II—Continued	FMI • Femtosecond Surface Science— Continued	FMJ • Illumination II: Vision and Measurement— Continued	FMK • General Optical Sciences II—Continued
SMD3 • 5:00 p.m. Invited The Rejuvenation of Optical Spectros- copy, Boris Stoicheff; Univ. of Toronto, Canada. In Canada, as in many countries, the advent of the laser has brought unprec- edented growth in optical spectroscopy, resulting not only in precise determina- tions of atomic and molecular energy levels, but in detailed investigations of mechanisms having femtosecond and attosesond durations.	FMH4 • 5:00 p.m. A Time Bandwidth Limited Fiber Pair Photon Source, John G. Rarity ¹² , Jeremie Fulconis ¹ , Alex Clark ¹ , Jeremy L. O'Brien ¹ , Matthaeus Halder ¹ , William J. Wadsworth ² , Chunle Xiong ² , ¹ Univ. of Bristol, UK, ² Univ. of Bath, UK. Using birefringent phase matching in microstructured fibers we have developed a pair photon source with bandwidth limited solely by pulse length.		FMI3 • 5:00 p.m. Invited Generation and Time-Resolved Detec- tion of Coherently Controlled Electric Currents at Surfaces, J. Gudde ¹ , M. Rohleder ¹ , T. Meier ² , S. W. Koch ¹ , Ulrich Höfer ¹ , ¹ Philipps-Univ. Marburg, Germany, ² Univ. Paderborn, Germany. We dem- onstrate an experimental technique for the generation and detection of electron currents at surfaces on a femtosecond time scale with a contact-free experimental setup based on a combination of coherent control and photoemission spectroscopy.		FMK5 • 5:00 p.m. Generation of Maximal Coherence in Two-Level System via Breaking Adial ticity, Yuri Rostovtsev ¹ , Hichem Eleuch Anatoly Svidzinsky ¹ , Marlan O. Scully ¹ Inst. for Quantum Studies, Texas Aé Univ, USA, ² Inst. Natl. des Sciences App ques et de Technologie, Tunisia, ³ Princet Inst. for the Science and Technology Materials and Dept. of Mechanical a Aerospace Engineering, Princeton Un USA. We study population transfer a the generation of quantum coherence i two-level system interacting with a stro off-resonance ultra-short laser pulse. V derive analytical solutions for an ult short pulse of arbitrary shape.
	FMH5 • 5:15 p.m. Increasing the Bandwidth of Quantum Light: A New Way towards the Gen- eration of Narrow Temporal Biphoton, <i>Xiaojuan Shi, Martin Hendrych, Alejan- dra Valencia, Juan Perez Torres; ICFO,</i> <i>Institut de Ciències Fotòniques, Spain.</i> We experimentally demonstrate a new method to enlarge the quantum light bandwidth. Paired photons with bandwidths more than 1000 THz could be obtained, which opens up a new way to generate narrow temporal biphoton states.			FMJ4 • 5:15 p.m. Effectiveness of Various Light Sources on the Stimulation of Phosphorescent Safety Markings, David R. Wyble', C. Cameron Miller ² , Maria E. Nadal ² ; ¹ Munsell Color Science Lab, Rochester Inst. of Technology, USA, ² NIST, USA. Commercially available phosphorescent materials are experimen- tally evaluated under conventional and solid-state lighting sources. The spectral and photopic properties of the sources are considered against the current ASTM test method for photoluminescent safety markings.	FMK6 • 5:15 p.m. Propagation of Electromagnetic Wav in Non-Uniform Volume Bragg Gratin Sergiy V. Mokhov, Leonid B. Glebov, Vad I. Smirnov, Boris Ya Zeldovich; CREOL a FPCE, College of Optics and Photoni Univ. of Central Florida, USA. Spect properties of reflective Volume Bra Gratings (VBG) are studied with rigorc coupled wave approach. Similarities a differences between volume and fiber gr ings are discussed. Simulation techniq for VBG is proposed and compared w experiment.
SMD4 • 5:30 p.m. Invited Looking back to the Laser of Schawlow and Townes, and Looking forward to the Generation of Gravitational Radia- tion, Raymond Chiao; Univ. of California at Merced, USA. In 1958 Schawlow and Townes proposed the use of stimulated emission for generating macroscopically coherent light. I propose that the use of charged, macroscopically coherent quan- tum matter can lead to efficient generation of gravitational waves.	FMH6 • 5:30 p.m. Measurement of Biphoton Wavefunc- tions Using Fast Amplitude Modulators, Chinmay Belthangady, Shengwang Du, Pavel Kolchin, Guang-Yu Yin, Stephen E. Harris; Stanford Univ, USA. We demon- strate a proof-of-principle experimental realization of a novel technique that uses fast amplitude modulators to measure biphoton waveforms whose temporal lengths are shorter than the resolution time of present single photon counting wordvie		FMI4 • 5:30 p.m. Invited Ultrafast Dynamics of Electron Transfer at Polar Adsorbate/Metal Interfaces Studied with Time-Resolved Photo- electron Spectroscopy, Martin Wolf; Freie Univ. Berlin, Germany. Interfacial electron transfer and solvation processes in thin layers of water and ammonia on metal surfaces are studied by femtosecond photoelectron spectroscopy to analyze the tunnelling barrier and solvation site of photoinjected excess electrons.	FMJ5 • 5:30 p.m. Shape Recognition through Opto- Mechanical Scanning, Jenny Magnes ¹ , Trevor David ¹ , Rahul Khakurel ¹ , Margo Kinneberg ¹ , Derek Olson ¹ , Noureddine Melikechi ² , ¹ Vassar College, USA, ² Delaware State Univ., USA. We explore capabilities and limits of opto-mechanical knife-edge scanning methods for the purpose of shape recognition techniques that are scale invariant. Different algorithms for corner scanning, opto-mechanical integration and summatry based chape recognition	FMK7 • 5:30 p.m. Paper Withdrawn

FiO/LS/META/OF&T 2008 • October 19–24, 2008

and symmetry based shape recognition

are discussed.

modules.

6:30 p.m.–8:30 p.m. OSA Student Member Welcome Reception, Abilene, 153 Liberty Pole Way, Downtown Rochester, Phone: 585.232.3230

This Workshop was part of FiO 2008/LS XXIV.

A consolidated program including information on this workshop and all collocated meetings (FiO, LS, OF&T and META) is available with the FiO 2008 meeting archive and includes the complete agenda of sessions, abstracts, subject index, and key to authors and presiders.