High-brightness Sources and Light-Driven Interactions Congress Program

Compact (EUV & X-ray) Light Sources (EUV & X-ray) High-Intensity Lasers and High-Field Phenomena (HILAS) Mid-Infrared Coherent Sources (MICS)

26 - 28 March 2018

Hilton Strasbourg Strasbourg, France

Chairs' Welcome Letter 2
Program Committee
General Information 4
Plenary Speakers
Buyers' Guide 6
Explanation of Session Codes
Agenda of Sessions 10
Abstracts
Key to Authors and Presiders
Sponsors
Technical Digest Access Inside Back Cover

Welcome to the 2018 High-brightness Sources and Light-driven Interactions Congress,

We hope that you enjoy your time in beautiful Strasbourg, France, and have an opportunity to explore this charming city! This year the Congress features three topical meetings that have been collocated to propel discourse on the latest advances in high-brightness sources, attosecond science, light-driven interactions and mid-IR laser technologies; and to understand the technical challenges in the development of high-brightness sources at all wavelengths, from x-ray to mid-IR. With exciting plenary speakers, strong representation from industry, stimulating presentations, networking opportunities and open discussions, the Congress aims to promote new ideas between researchers, engineers and managers.

This year's Congress features a multitude of educational, networking and social events to ensure all congress participants have ample time to engage in important discussions and critical knowledge sharing. We start on Monday morning with our three plenary speakers - Federico Capasso, Britt Turkot and Andreas Tünnermann. Monday evening join us for a special session dedicated to the emerging Extreme Light Infrastructure (ELI) facilities that are getting ready for user access and are in the process of growing together. We will discuss with their leadership vision, perspective and process for conducting experiments there and will have a Q&A session with them. Tuesday will feature postdeadline papers and the conference reception with the poster session across the street at the Strasbourg Convention Center. This is in addition to outstanding technical sessions for three full days.

The High-Intensity Lasers and High-Field Phenomena (HILAS) topical meeting aims to assemble a multidisciplinary community to present and exchange novel ideas and breakthrough achievements relating to the physics and technology of high field sources, and high-intensity laser-matter interaction.

Organizers have assembled an exciting program of 12 invited speakers, along with contributed oral and poster presentations this year.

Mid-Infrared Coherent Sources (MICS) topical meeting focuses on the most recent advances in mid-IR to THz science and technology, including the latest developments in solid-state, fiber, and semiconductor materials, novel laser sources, nonlinear frequency conversion techniques and parametric devices, as well as the application of mid-IR and THz sources in remote sensing, spectroscopy, frequency synthesis, imaging, and biomedicine. Attendees will hear numerous contributed talks in addition to 9 invited talks covering a range of topics.

The Compact (EUV & X-ray) Light Sources topical meeting aims to assemble experts in both source technologies and their applications, to introduce and exchange ideas and improve community-wide understanding of current and future source capabilities and current and future application needs. During these sessions, the latest results in the development of these sources will be presented. In addition, descriptions efforts to mature the technology so that they meet the requirements needed in order to transition the technology to industrial medical and research applications will be discussed.

We hope you will join us at all these events and that you enjoy your time in France!

High-brightness Sources and Light-driven Interactions Congress Meeting Chairs

Program Committees

Compact (EUV X-RAY) Light Sources

Lahsen Assoufid, *Argonne National Laboratory, USA*, General Chair Patrick Naulleau, *Lawrence Berkeley National Laboratory, USA*,

General Chair Marie-Emmanuelle Couprie, *Synchrotron SOLEIL, France,* Program Chair

Tetsuya Ishikawa, *RIKEN, SPring-8, Japan,* **Program Chair** Jorge Rocca, *Colorado State University, USA*, **Program Chair**

Akira Endo, *HiLase, Czech Republic* Igor Fomenkov, *ASML, San Diego, USA* Debbie Gustafson, *Energetiq Technology Inc., USA* Hans Hertz, *Kungliga Tekniska Hogskolan, Sweden* Bob Hettel, *Stanford University, USA* Franz Kaertner, *Universität Hamburg, Germany* Annie Klisnick, *CNRS, France* Kazuhiko Omote, *Rigaku Corporation, Japan* Zhentang Zhao, *Shanghai Institute of Applied Physics, China*

High-Intensity Lasers and High-Field Phenomena (HILAS)

Jean-Claude Kieffer, *INRS-Energie Materiaux et Telecom*, *Canada*, **General Chair**

Tamas Nagy, *Max Born Institute, Germany,* **General Chair** Günter Steinmeyer, *Max Born Institute, Germany,*

General Chair

Constantin Haefner, *Lawrence Livermore National Lab, USA,* **Program Chair**

Bedrich Rus, *Prague ELI, Czech Republic,* **Program Chair** Giuseppe Sansone, *Albert-Ludwigs-Universität, Germany,* **Program Chair**

Andreas Assion, FemtoLasers Produktions GmbH, Austria Daniele Brida, University of Konstanz, Germany Antonino Di Piazza, Max-Planck-Institut für Kernphysik, Germany Subhendu Kahaly, Extreme Light Infrastructure ALPS, Hungary Efim Khazanov, Institute of Applied Physics, Russia Andrew Kung, National Tsing Hua University, Taiwan Rodrigo Lopez-Martens, Laboratoire d'Optique Appliquée, France Yann Mairesse, Centre Lasers Intenses et Applications, France Thomas Metzger, TRUMPF Scientific Lasers GmbH + Co.KG, Germany Jean-Luc Miguel, CEA DAM, France Nina Rohringer, Max Planck Advanced Study Group, Germany Luis Roso, Centro de Laseres Pulsados, Spain Hartmut Ruhl, LMU, Germany Emily Sistrunk, Lawrence Livermore National Laboratory, USA Emma Springate, STFC Rutherford Appleton Lab., UK Eiji Takahashi, RIKEN, Japan John Tisch, Imperial College London, UK Laszlo Veisz, Max-Planck-Institut fur Quantenoptik, Sweden Caterina Vozzi, IFN-CNR, Italy Zhiyi Wei, Institute of Physics, CAS, China

Mid-Infrared Coherent Sources (MICS)

Majid Ebrahim-Zadeh, ICFO - The Institute of Photonic Sciences, Spain, General Chair Irina Sorokina, Norges Teknisk Naturvitenskapelige Univ., Norway, General Chair Giuseppe Leo, Laboratoire Matériaux et Phénomènes Quantiques, France, Program Chair Benoit Boulanger, Neel Institute, France Scott Diddams, National Inst. of Standards & Technology, USA Marc Eichhorn, Inst. Franco-Allemand Recherches St. Louis. France Magnus Haakestad, Norwegian Defense Research Establishment, Norway Amr Helmy, University of Toronto, Canada Juliette Mangeney, Ecole Normale Superieure, France Delphine Marris-Morini, Universite de Paris-Sud, France Hiroaki Minamide, RIKEN, Japan Sergey Mirov, University of Alabama at Birmingham, USA Richard Moncorge, Universite de Caen, France Peter Moselund, NKT Photonics Inc., Denmark Christian Pedersen, DTU Fotonik, Denmark Peter Schunemann, BAE Systems Inc., USA Brandon Shaw, US Naval Research Lab, USA Chaitanya Kumar Suddapalli, Radiantis, Spain Takunori Taira, Institute for Molecular Science, Japan Angela Vasanelli, University Paris Diderot, France Konstantin Vodopyanov, University of Central Florida, CREOL, USA

Thank you to all the

Committee Members for contributing many hours to maintain the high technical quality standards of OSA meetings.

General Information

Registration

Bartholdi C, Hilton Strasbourg Please note: Registration desk will be closed during lunch breaks.

Sunday, 25 March	15:00 – 18:00
Monday, 26 March	07:00 – 18:30
Tuesday, 27 March	07:30 – 16:00
Wednesday, 28 March	07:30 – 16:00

Online Access to Technical Digest

Full Technical Attendees have both EARLY and FREE continuous online access to the Congress Technical Digest including the Postdeadline papers through OSA Publishing's Digital Library. The presented papers can be downloaded individually or by downloading .zip files (.zip files are available for 60 days).

- 1. Visit the conference website at <u>www.osa.org/</u> <u>HighBrightnessOPC</u>
- 2. Select the "Access digest papers" link on the right hand navigation.
- Log in using your email address and password used for registration. You will be directed to the conference page where you will see the .zip file link at the top of this page. [Note: if you are logged in successfully, you will see your name in the upper right-hand corner.]

Poster Presentation PDFs

Authors presenting posters have the option to submit the PDF of their poster, which will be attached to their papers in OSA Publishing's Digital Library. If submitted, poster PDFs will be available about two weeks after the meeting. While accessing the papers in OSA Publishing's Digital Library look for the multimedia symbol shown above.

About OSA Publishing's Digital Library

Registrants and current subscribers can access all of the meeting papers, posters and postdeadline papers on OSA Publishing's Digital Library. The OSA Publishing's Digital Library is a cutting-edge repository that contains OSA Publishing's content, including 16 flagship, partnered and copublished peer reviewed journals and 1 magazine. With more than 304,000 articles including papers from over 640 conferences, OSA Publishing's Digital Library is the largest peer-reviewed collection of optics and photonics.

Access to the Wireless Internet

OSA has provided complimentary Wi-Fi for all conference attendees.

Network: HHonors Password: OSA2018

Plenary Speakers

Britt Turkot, *Intel Corporation*, USA Compact Sources and Chip-Making

Britt joined the Photolithography department at Intel's Portland Technology and Development organization in 1996 after completing her B.S. degree in Metallurgical Engineering and M.S. and Ph.D. degrees in Materials Science and Engineering from the University of Illinois at Urbana-Champaign. Britt has been involved in many aspects of lithography development in PTD, including her current role as program manager of Intel's EUV lithography program along with development of scanner reticle and frame graphics as well as the integration of new lithography tool platforms into Intel factories.

Federico Capasso, *Harvard University,* USA **Quantum Cascade Laser Renaissance**

Federico Capasso is the Robert Wallace Professor of Applied Physics at Harvard University, which he joined in 2003 after 27 years at Bell Labs where his career advanced from postdoctoral fellow to Vice President for Physical Research. He is a member of the National Academy of Sciences, the National Academy of Engineering, a fellow of AAAS and a foreign member of the Accademia dei Lincei. His awards include the IEEE Edison Medal, the American Physical Society Arthur Schawlow Prize in Laser Science, the King Faisal Prize, the SPIE Gold Medal, the AAAS Rumford Prize, the IEEE Sarnoff Award, the Materials Research Society Medal, the Franklin Institute Wetherill Medal, the European Physical Society Quantum Electronics Prize, the SPIze in Optoelectronics, the Optical Society Wood Prize, the Berthold Leibinger Future Prize, the Julius Springer Prize in Applied Physics, the Institute of Physics Duddell Medal, the Jan Czochralski Award for lifetime achievements in Materials Science, and the Gold Medal of the President of Italy for meritorious achievement in science.

Andreas Tünnermann, *Fraunhofer Inst. for Applied Optics and Precision Engineering*, Germany Perfomance Scaling of Ultrafast Lasers via Coherent Combination

Andreas Tünnermann is Director of the Fraunhofer Institute of Applied Optics and Precision Engineering and Chair for the Insitute of Applied Physics at Friedrich-Schiller-University Jena. His main research interests include scientific and technical aspects associated with the tailoring of light. Research topics are the design and manufacturing of novel micro- and nano-optical photonic devices using high-end microlithography and its application for generation, amplification, steering and switching of light. In particular, his work on high power diode pumped fiber and waveguide lasers is widely recognized.

Andreas Tünnermann is member of the German Physical Society, European Physical Society and acatech, fellow of OSA and SPIE. His research activities on applied quantum electronics have been

awarded with the Röntgen-Award, WLT-Award, Otto-Schott-Award, Leibinger Innovation Award and the Gottfried-Wilhelm-Leibniz-Award. Most recently, he received the ERC-Advanced Grand of the EU.

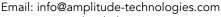
Exhibitor List / Buyers' Guide

Active Fiber Systems

Wildenbruchstraße 15 Jena 07745, Germany P: +49.3641.6338902 Email: email@afs-jena.de URL: www.afs-jena.de

Active Fiber Systems GmbH (AFS) represents the expertise of innovative solid-state laser development. Our mission is to transfer outstanding experimental results to reliable laser systems suitable for scientific and industrial applications. Among the remarkable features of AFS's pulsed fiber lasers, compression modules and HHG beamlines are their compact dimensions, considerably reduced production costs as well as flexible and outstanding parameters, which can be customized.

American Elements



Sponsor 1093 Broxton Avenue, Suite 2000 Los Angeles, CA 90024, USA P: +1.310.208.0351 Email: customerservice@americanelements.com URL: www.americanelements.com

American Elements is the world's manufacturer of engineered & advanced materials with a catalog of over 16,000 materials including ferro metals, ferro alloys, compounds and nanoparticles; high purity metals, chemicals, semiconductors and minerals; and crystal-grown materials for commercial & research applications including high performance steels, super alloys and automotive, aerospace, military, medical, electronic, and green/clean technologies. American Elements maintains research and laboratory facilities in the U.S. and manufacturing/ warehousing in the U.S., Mexico, Europe, & China.

Amplitude

2 Rue du Bois Chaland Lilles 91090, France P: +33.1.69.11.27.90

URL: www.amplitude-laser.com

Amplitude is a leading manufacturer of ultrafast lasers for scientific, medical and industrial applications. From ultrafast industrial fiber lasers to petawatt-class high intensity lasers, Amplitude is focused on helping its customers with advanced solutions. Amplitude offers a unique and distinct product portfolio: diodepumped ultrafast solid-state lasers, ultra-high energy Ti:Sapphire

ultrafast lasers and a full line of high energy solid state laser products.

ARDOP Industrie

Avenue de Canteranne – cite de la photonique **Batiment Pléione** Pessac 33600, France P: +33.1.69.63.26.09 Email: alex.pacholski@ardop.com URL: www.ardop.com ARDOP INDUSTRIE is a company dedicated to representation and distribution of optical material (components and instrumentation) in the French and European market. Our knowledge and network on ultra-intense and high power laser allow us a close

relationship with our customers and integrators. Furthermore, ARDOP can offer complete turnkey systems, from the design to the installation on site, for beam transport line and interaction module for ultra-intense laser systems.

Class 5 Photonics GmbH

Notkestr. 85 Hamburg, Germany P: 49.40.22.86.31.65.21 Email: robert.riedel@class5photonics.com URL: www.class5photonics.com

EKSPLA

Savanoriu Av. 237 Vilnius LT-02300, Lithuania Email: sales@ekspla.com URL: www.ekslpa.com

Innovative manufacturer of solid state and fiber lasers, systems and components from unique custom systems for basic research to small OEM series. In-house R&D team and more than 25 years of experience enable to tailor products for specific applications and/or according to specific requirements. Main products are femtosecond, picosecond and nanosecond lasers, high energy lasers, tunable wavelength systems, ultrafast fiber lasers, spectroscopy systems and laser electronics.

FASTLITE

1900 Route des Crêles Les Collines de Sophia Valbonne 06600, France P: 33.04.8813.1753 Email: herve.jousselin@fastlite.com URL: www.fastlite.com

FASTLITE proposes innovative solutions for the ultrafast laser user community. Products include the DAZZLER pulse shaper, and the WIZZLER spectral phase measurement system. The DAZ-ZLER/WIZZLER feedback loop enables automated pulse compression and contrast optimization of amplified laser pulses. The FRINGEEZZ CEP detector allows high bandwidth feedback loop to reach ultimate CEP stability. Our new IR OPCPA systems deliver tunable, few-cycle, CEP-stabilized pulses with few 10s of uJ at 100 kHz.

JTEC

Sponsor 2-4-35, Yamabuki Saito Ibaraki-city Osaka, Japan P: 81.72.643.2292 Email: megumi.kiyomoto@j-tec.co.jp URL: www.j-tec.co.jp

Exhibitor List / Buyers' Guide

Kapteyn-Murnane Laboratories (KMLabs, Inc.)

4775 Walnut Street, Ste. 102 Boulder, CO 80301-2811, USA P: +1.303.544.9068 Email: maryel@kmlabs.com URL: kmlabs.com

KMLabs is the technology leader for commercial & custom ultrafast laser systems, as well as world leading coherent extreme-UV/ x-ray laser sources. Our ultrafast ti:sapphire laser-amplifier systems have unmatched high average power (>25W one-box) and short pulse duration (<25fs, measured rigorously); are ideal for driving our XUUS₄TM ultrafast EUV light source. Our Y-FiTM fiber laser series has best-in-class pulse duration, providing a compact and robust platform for the one-box Y-Fi OPATM tunable 1.2-45 µm MHz ultrafast source.

LOT-QuantumDesign GmbH

Im Tiefen See 58 Darmstadt 64293, Germany P: +49.6151.8806.0 Email: schreder@lot-qd.de URL: www.lot-qd.de

NOVAE

ZA de Bel Air Saint Martin le Vieux 87700, France P: +33.658.091.289 Email: n.ducros@novae-laser.com URL: www.novae-laser.com

NOVAE has focused in industrialization and commercial development of a new generation advanced mid-IR lasers for scientific applications in the mid infrared such as supercontinuum generation and spectroscopy, material processing. Since its foundation, Novae released two product lines: 1) Coverage: a mid-IR supercontinuum laser emitting from 2 to 4 μ m; and 2) Brevity: a 2 μ m femtosecond fiber laser (from <100fs up to 10 ps, from few nJ up to μ J energy level).

OSA Publications

2010 Massachusetts Avenue, NW Washington DC 20036, USA P: +1.202.223.8130 Email: info@osa.org URL: www.osa.org

OSA Publishing publishes & distributes the largest collection of peer-reviewed optics and photonics content via the OSA Publishing Digital Library. Covering a variety of disciplines including physics, engineering, biomedical, telecommunications, and energy, this repository of 16 journals, 1 magazine, and hundreds of conference proceedings has the highest number of citations of any other publisher in Optics category.

SIGRAY, INC.

Sponsor 5750 Imhoff Dr. Suite I Concord, CA 94520 USA P: +1.925.232.1991 Email: info@sigray.com URL: www.sigray.com

Sigray is the premiere producer of high resolution x-ray optics with high flux that provide significant advantages over approaches such as KB mirrors. The company has recently achieved a 250nm focusing soft x-ray capillary optic. In addition to optics, Sigray is dedicated to bringing synchrotron x-ray capabilities to laboratories, and specializes in x-ray systems that incorporate patented, ultrahigh brightness x-ray sources and optics to enable synchrotron-quality x-ray microscopy, micro x-ray fluorescence, and x-ray absorption spectroscopy

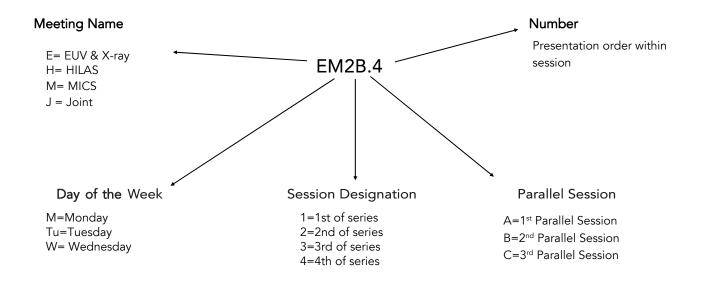
TRUMPF Laser- und Systemtechnik GmbH

Platinum Sponsor Johann-Maus-Strabe 2

Ditzingen 71254, Germany

P: +49.7156.3030 Email: andrea.betzler@de.trumpf.com URL: www.de.trumpf.com

The high-technology company TRUMPF offers production solutions in the machine tool and laser sectors. It is driving digital connectivity in manufacturing industry through consulting, platform and software offers. TRUMPF, is the world technological and market leader for machine tools use in flexible sheet metal processing, and also for industrial lasers. In 2016, the TRUMPF Group – which has about 12,000 employees – achieved sales of 3.11 billion euros. With over 70 subsidiaries, it is represented in all the countries of Europe, North and South America, and Asia. It has production facilities in Germany, France, Great Britain, Italy, Austria, Switzerland, Poland, the Czech Republic, the USA, Mexico, China and Japan.


UltraFast Innovations GmbH

Am Coulombwall 1 85748 Garching, Germany P: + 49.89.289.14097 Email: info@ultrafast-innovations.com URL: www.ultrafast-innovations.com

UltraFast Innovations provides customized premium ultrafast optics and devices. Many years of know-how in optics design and manufacturing allow us to implement latest research results into novel optics solutions. Our optics can be found in the laser sources of most major femtosecond OEM manufacturers. Our optics portfolio features: Ultra-broadband mirrors for pulse compression down to sub-4 femtoseconds, highly dispersive and high -reflectance mirrors. We also provide specialized diagnostic and instrumentation for ultrafast applications.

Notes	

Explanation of Session Codes

The first letter of the code designates the meeting. The second element denotes the day of the week . The third element indicates the session series in that day (for instance, 1 would denote the first sessions in that day). Each day begins with the letter A in the fourth element and continues alphabetically through the parallel session. The lettering then restarts with each new series. The number on the end of the code (separated from the session code with a period) signals the position of the talk within the session (first, second, third, etc.). For example, a presentation coded EM2B.4 indicates that this paper is being presented as part of the EUV meeting on Monday (M) in the second series of sessions (2), and is the second parallel session (B) in that series and the fourth paper (4) presented in that session.

Online Access to Technical Digest

Full Technical Attendees have both EARLY and FREE perpetual access to the digest papers through

OSA Publishing's Digital Library.

To access the papers go to www.osa.org/HighBrightnessOPC and select the "Access Digest Papers"

As access is limited to Full Technical Conference Attendees only, you will be asked to validate your credentials by entering the same login email address and password provided during the Conference registration process. If you need assistance with your login information, please use the "forgot password" utility or "Contact Help" link.

Agenda of Sessions

Sunday, 25 March		
15:00—18:00	Registration, Bartholdi C	

Monday, 26 March				
	Orangerie CDE Orangerie B		Orangerie A	
	HILAS	EUV & X-ray	MICS	
07:00—18:30	Registration, Bartholdi C			
08:00—10:00	JM1A • Plenary Session, Orangerie CDE			
10:00—10:30	Coffee Break with Exhibitors, Foyer Orangerie			
10:30—12:30	HM2A • Attosecond Science & Applications	EM2B • Compton Scattering Sources	MM2C• Solid-State and Fiber Lasers and Frequency Combs	
12:30—14:00	Lunch on your Own			
14:00—16:00	HM3A • Laser Driven Particle Beams and Radiation	EM3B • Laser Plasma based Sources	MM3C • Laser Materials and Structures for Mid-IR	
16:00—16:30	Coffee Break with Exhibitors, Foyer Orangerie			
16:30—18:30	HM4A • Ultrafast Dynamics I	EM4B • Free-electron Laser and Electron Beam Sources I	MM4C • Remote Sensing and Imaging	
18:30—20:00	ELI Overview, Orangerie CDE			

Agenda of Sessions

Tuesday, 27 March			
	HILAS	EUV & X-ray	MICS
07:30—16:00	Registration, Bartholdi C		
08:00—10:00	HT1A • High Intensity Lasers at Average Power	ET1B • Compact Sources I	MT1C • MIR and THz Sources
10:00—10:30	Coffee Break with Exhibitors, Foyer Orangerie, Hilton Strasbourg		
10:30—12:30	HM3A • Laser Driven Particle Beams and Radiation	ET2B • Applications in Imaging	MT2C • Nonlinear Optical Materials and Structures for Mid-IR
12:30—14:00	Lunch on your own		
14:00—16:00	HM4A • Ultrafast Dynamics I	ET3B • EUV Lithography and Semiconductor Manufacturing 1	MT3C • Spectroscopy, Microscopy and Biophotonics
17:30—19:00	JT5A • Poster Sessions Strasbourg Convention Center , Marie Curie Room		
18:30—20:00	Welcome Reception Strasbourg Convention Center , Marie Curie Room		

Agenda of Sessions

Wednesday, 28 March				
	Orangerie C	Orangerie B	Orangerie A	Orangerie DE
	HILAS	EUV& X-ray	MICS	HILAS
07:30—16:00	Registration, Bartholdi C			
08:00—10:00	HW1A • Theoretical Advanced in High- Field Physics	EW1B • EUV Lithography and Semiconductor Manufacturing II	MW1C • Nonlinear Frequency Conversion and Parametric Sources I	
10:00—10:30	Coffee Break with Exhibitors, Foyer Orangerie, Hilton Strasbourg			
10:30—12:30	HW2A ● UltraFast Dynamics II	EW2B ● High Harmonic Generation	MW2C • Nonlinear Frequency Conversion and Parametric Sources II	
12:30—14:00	Lunch on your Own			
14:00—16:00	HW3A ● Nonlinear phenomena and HHG	EW3B • Free-electron Laser and Electron Beam Sources II	MW3C ● THz Generation and Frequency Combs	HW3D ● Ultrashort Pulse Generation & characterization
16:00—16:30	Coffee Break with Exhibitors, Foyer Orangerie, Hilton Strasbourg			
16:30—18:30	HW4A • Extreme Light Infrastructure - Capabilities & Experiments	EW4B • Compact Sources II	MW4C • Comb Spectroscopy, Materials Processing	

High power meets ultrafast

TRUMPF Scientific

Scientific Laters

Dira 200-1

For the first time, the extensive thin-disk technology know-how of the TRUMPF Group becomes available for scientific applications:

- High-power picosecond thin-disk laser systems: up to 200 millijoule pulse energy at kilohertz repetition rates – the highest pulse energies available today.
- Ultra-fast optical parametric amplification stages: sub-10 femtosecond pulses with multi-millijoule energy – currently the most powerful few-cycle pulses.

www.trumpf-scientific-lasers.com

11.U.M. - 1

07:00—18:30 • Registration, Bartholdi C

Orangerie CDE

08:00 -- 10:00 JM1A • Plenary Session

JM1A.1 • 08:15

Quantum Cascade Laser Renaissance, Federico Capasso; Harvard University, USA. Parametric effects and ultrafast gain dynamics in QCLs lead to single mode instability, multimode operation and to a new regime, the "harmonic" state, which are opening up new frontiers in frequency combs and RF Photonics

JM1A.2 • 08:45

Compact Sources and Chip-Making, Britt Turkot¹; ¹*Intel Corp., USA.* In the past year, EUV LPP exposure sources have reached satisfactory power levels, achieving the long -established milestone of 250W. With EUV exposure tools, the source remains the leading cause of system down-time, including both routine scheduled maintenance as well as unplanned corrective actions. The nature of LPP source design leads to contamination, exposure dose errors, and the need for additional power to mitigate such effects. Compact sources offer possible opportunities in support of chip-making, including not only the option to replace the exposure source but also to provide sources for mask metrology (both lens and lens-less) as well as to support materials research and development.

JM1A.3 • 09:15

Performance Scaling of Ultrafast Lasers via Coherent Combination, Andreas Tünnermann¹; ¹Fraunhofer Inst. for Applied Optics and Precision Engineering, Germany. Coherent combination of ultrashort laser pulses emitted from spatially-separated amplifiers is a promising power-scaling technique for ultrafast laser systems concerning peak power and average power. In this presentation, the status and prospects of coherently combined fiber-CPA systems will be discussed.

10:00—10:30 • Coffee Break with Exhibitors, Foyer Orangerie

INVEST IN YOUR FUTURE. JOIN OSA TODAY.

Your OSA Membership includes:

- · Members-only pricing on OSA meetings and journals
- Subscriptions to OPN & Physics Today
- 50 downloads from OSA Publishing
- Technical group memberships

Get started and save 20% on a one year, individual membership."

Visit osa.org/join and enter in discount code 2018OSAM.

*Promotion applies to a 1-year individual membership only and excludes those residing in economically developing nations.

ANTIGONE MARINO, Italy

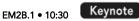
discoveries

Orangerie A

HILAS

10:30 -- 12:30

HM2A • Attosecond Science & Applications Presider: Caterina Vozzi; IFN-CNR, Italy


HM2A.1 • 10:30 Invited

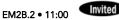
New Frontiers in High Harmonic Spectroscopy, Nirit Dudovich1; ¹Weizmann Inst. of Science, Israel. Abstract not provided.

EUV & X-ray

10:30 -- 12:30

EM2B • Compton Scattering Sources Presider: Franz Kaertner; Universität Hamburg, Germanv

Ultrabright Laser-Compton Light Sources and Novel Applications, Christopher P. Barty¹; ¹Univ. of California, Irvine, USA. The development, optimization and applications of compact, high-peak and high-average brilliance laser-Compton x-ray and gamma-ray sources is reviewed. Potential applications range from nuclear photonics to precision medical imaging and theranostics.


HM2A.2 • 11:00

Attosecond spatial interferometry for complete threedimensional electric field reconstruction., Giuseppe Sansone^{1,2}, Paolo Carpeggiani², Maurizio Reduzzi², Antoine Comby², Hamed Ahmadi^{2,3}, Sergei Kuehn⁴, Francesca Calegari², Mauro Nisoli², Fabio Frassetto⁵, Luca Poletto⁵, Dominik Hoff⁶, Joachim Ullrich⁷, Claus Dieter Schroeter⁸, Robert Moshammer⁸, Gerhard Paulus6; 1Albert-Ludwigs-Univ. Freiburg, Germany; ²Politecnico Milano, Italy; Univ. of Tehran, Iran; ⁴ELI-ALPS, Hungary; ⁵Inst. of Photonics and Nanotech., CNR, Italy; ⁶Institut für Optik und Quantenelektronik, Friedrich-Schiller-Univ. Jena, Germany; ⁷Physikalisch-Technische Bundesanstalt, Germany; ⁸Max-Planck-Inst. für Kernphysik, Germany. We demonstrate the complete temporal reconstruction of visible pulses with a time-dependent polarisation state, using extreme ultraviolet spatial interferometry based on two coherent isolated attosecond pulses.

HM2A.3 • 11:15

Attosecond-Resolved Photoionization of Chiral

Molecules, Samuel Beaulieu², Antoine Comby², Alex Clergerie², Jérémie Caillat³, Dominique Descamps², Nirit Dudovich⁴, Baptiste Fabre², Romain Géneaux⁵, François Légaré¹, Stéphane Petit², Bernard Pons², Gil Porat⁴, Theirry Ruchon⁵, Richard Taïeb³, Valérie Blanchet², Yann Mairesse²; ¹Inst. National de la Recherche Scientifique, Canada; ²Univ. de Bordeaux -CNRS - CEA, CELIA, France; ³Sorbonne Univ., UPMC Univ. Paris , CNRS-UMR 7614, LCPMR, France; ⁴Weizmann Inst. of Science, Israel; ⁵LIDYL, CEA, CNRS, Univ. Paris-Saclay, CEA Saclay, France. Using photoelectron interferometry, we have measured the angularly-resolved forward-backward asymmetry of the Wigner delays in chiral molecules, as well the asymmetric temporal profile of a photoelectron wavepacket liberated in the vicinity of an autoionizing resonance.

Commissioning of ASU Compact X-ray Light Source (CXLS), William Graves1; ¹Arizona State Univ., USA. CXLS is an x-ray source with predicted output of 1e11 photons/sec in 5% bandwidth, 500 fs length, and photon energy from 1 – 40 keV. The major subsystems are currently under test. Commissioning status will be reported.

MICS

10:30 -- 12:30 MM2C • Solid-State and Fiber Lasers and **Frequency Combs**

Presider: Majid Ebrahim-Zadeh; ICFO - The Inst. of Photonic Sciences, Spain

MM2C.1 • 10:30 Invited

The Bright Future of Mid-Infrared Fiber Lasers, Real Vallee¹, Martin Bernier¹, Vincent Fortin¹, Simon Duval¹, Frédéric Maes¹, Jean-Christophe Gauthier¹, Yigit O. Aydin¹, Pascal Paradis¹, Frédéric Jobin¹, Louis-Rafael Robichaud¹, Louis-Philippe Pleau¹; ¹Universite Laval, Canada. Mid-infrared fiber lasers based on rare-earth active ions or Raman gain are reviewed in terms of their wavelength coverage and their average and peak power scaling with respect to future technical challenges as well as application perspectives.

MM2C.2 • 11:00

Cr:ZnSe Hybrid Laser System for CEP-Stable Pulses, Pavel Komm¹, Uzziel Sheintop^{2,1}, Salman Noach², Gilad Marcus¹; ¹Hebrew Univ. of Jerusalem, Israel; ²Applied Physics, Jerusalem College of Tech., Israel. A hybrid laser scheme in which parametrically generated, carrier to envelope phase stable, mid-IR pulses with picojoule energies are amplified by three orders of magnitude in a Cr:ZnSe laser amplifier is presented.

MM2C.3 • 11:15

Power and Energy Scaling of Femtosecond Middle IR Pulses in Single-Pass Cr:ZnS and Cr:ZnSe Amplifiers, Sergey Vasilyev¹, Jeremy Peppers¹, Viktor Smolski¹, Igor Moskalev¹, Mike Mirov¹, Sergey Mirov^{1,3}, Valentin Gapontsev²; ¹IPG Photonics Southeast Technology Center, USA; ²IPG Photonics Corp., USA; ³Center for Optical Sensors and Spectroscopies, Univ. of Alabama at Birmingham, USA. We report compact ultrafast mid-IR sources based on single-pass cw and pulsed pumped polycrystalline Cr:ZnS/Se laser amplifiers exhibiting up to 37% efficiency, up to 30 dB smallsignal gain, and spectral span of 1.6-4.5 um.

Orangerie B

Orangerie A

HILAS

EUV & X-ray

10:30 -- 12:30

10:30 -- 12:30 HM2A • Attosecond Science & Applications -Continuing

HM2A.4 • 11:30

Straightforward Production of Bright, Polarization-Tunable Attosecond High-Harmonic Waveforms via Circularly Polarized High Harmonic Generation, Kevin Dorney¹, Tingting Fan¹, Jennifer Ellis¹, Daniel Hickstein¹, Christopher Mancuso¹, Nathan Brooks¹, Dmitriy Zusin¹, Christian Gentry¹, Patrik Grychtol¹, Ronny Knut¹, Tenio Popmintchev¹, Carlos Hernández-García², Dejan Milošević^{3,4}, Henry Kapteyn¹, Margaret Murnane¹; ¹JILA Univ. of Colorado at Boulder and NIST, USA; ²Aplicada, Univ. of Salamanca, Spain; ³Faculty of Science, Univ. of Sarajevo, Bosnia and Herzegovina; ⁴Max Born-Inst., Germany. We experimentally demonstrate straightforward methodologies for generating high harmonics of arbitrary polarization state. Polarization control is realized by adjusting the intensity ratio of the bicircular driving field or by exploiting chirally dependent Cooper minima transitions.

HM2A.5 • 11:45

Intense attosecond pulses from relativistic interaction of few cycle lasers with plasma mirrors, Subhendu KAHALY¹, Mojtaba Shirozhan¹; ¹Extreme Light Infrastructure, ALPS, Hungary. Here we numerically study the optimal switching of relativistic high harmonic generation mechanisms and show that careful experiments can be designed by choosing appropriate parameter space where one can generate intense attosecond pulses from laser-plasmas.

HM2A.6 • 12:00

Nonlinear Interaction of 100-eV Attosecond XUV-Pulses with Core Electrons in Xenon, Boris Bergues^{1,2}, Daniel

E. Rivas^{1,2}, Matthiew Weidman¹, Alexander A. Muschet^{1,3}, Wolfram Helml², Alexander Guggenmos^{1,2}, Pervak Vladimir^{1,2}, Ulf Kleineberg^{1,2}, Gilad Marcus^{1,5}, Reinhard Kienberger^{1,6}, Dimitris Charalambidis⁴, Paraskevas Tzallas⁴, Hartmut Schröder¹, Ferenc Krausz^{1,2}, Laszlo Veisz^{1,3}; ¹Max-Planck-Inst. fur Quantenoptik, Germany; ²Ludwig-Maximilians-Univ. München, Germany; ³Umeå Univ., Sweden; ⁴Inst. of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Greece; ⁵The Hebrew Univ. of Jerusalem, Israel; ⁶Technische Univ. München, Germany. We demonstrate multiphoton ionization of inner-shell electrons in Xenon with 100-eV attosecond pulses. This was achieved with a novel XUV source based on highharmonic generation in the gas phase driven with multi-TW few-cycle laser pulses.

HM2A.7 • 12:15

The role of Gouy phase of Extreme ultraviolet in attosecond experiment, Byunghoon Kim^{1,2}, Jaeuk Heo¹,

Dong Eon Kim^{1,2}; ¹Pohang Univ. of Science & Technology, South Korea; ²Max Planck Center for Attosecond Science, Max Planck POSTECH/KOREA Res. Init, South Korea. In the streaking experiment using isolated attosecond pulses, the role of the XUV Gouy phase is revealed by observing the neon gas and Cu₂O phase difference as the Cu₂O target is moved.

EM2B • Compton Scattering Sources - Continuing

EM2B.3 • 11:30

The Munich Compact Light Source - Operating an Inverse Compton Source in User Mode, Martin Dierolf^{1,2}, Benedikt Günther^{1,2}, Regine Gradl^{1,2}, Christoph Jud^{1,2}, Elena Eggl^{1,2}, Bernhard Gleich², Klaus Achterhold^{1,2}, Franz Pfeiffer^{1,2}; ¹Chair of Biomedical Physics, Technical Univ. of Munich, Germany; ²Munich School of BioEngineering, Technical Univ. of Munich, Germany. Based on more than two years of operating the Munich Compact Light Source (MuCLS), we present our experiences concerning the everyday use of an inverse Compton device as an X-ray source for biomedical imaging.

EM2B.4 • 11:45

High-Energy Burst Mode Thin-disk Multipass Amplifier for Laser Compton X-ray Source, Siva Nagisetty^{1,2}, Michal Chyla¹, Martin Smrz¹, Akira Endo¹, Tomas Mocek1; ¹HiLASE Centre, Inst. of Physics AS CR, v.v.i., Czechia; ²Czech Technical Univ. in Prague, Czechia. High-energy ps-laser pulses with excellent beam quality are required for efficient Compton X-ray source. We report on a thin-disk multipass amplifier operated in burst mode with output of 0.5 J burst energy.

EM2B.5 • 12:00 X-ray Beam Monitoring and Source Position

Stabilization at an Inverse-Compton X-ray Source, Benedikt Günther^{1,2}, Martin Dierolf^{1,3}, Klaus

Achterhold^{1,3}, Franz Pfeiffer^{1,3}; ¹Chair of Biomedical Physics, Technische Universität München, Germany; ²Max-Planck-Inst. of Quantum Optics, Germany; ³Munich School of BioEngineering, Germany. Overlap between laser- and electron beam determines flux at inverse-Compton X-ray sources. Beam drifts deteriorate flux and source position. A closed-loop feedback system counteracting this movement was developed to stabilize source position.

EM2B.6 • 12:15

Analytical solutions for nonlinear Thomson scattering with radiation effects included., Marcel Ruijter¹, Sergey Rykovanov¹, Vasily Kharin¹; ¹Helmholtz Inst. Jena, Germany. An analytical solution for the nonlinear Thomson scattering with classical radiation reaction is provided. Estimates on the emitted frequencies for a given harmonic order are given and additional spectral broadening is discussed.

MM2C.7 • 12:15

High-energy self-frequency-shifted solitons in large mode area Bragg fiber pumped by 2 µm chirped pulse amplifier, Dmitry Gaponov¹, Hugo Delahaye², Laure Lavoute¹, Mathieu Jossent¹, Mikhail Salganskii³, Mikhail Likhachev⁴, Ammar Hideur⁵, Geoffroy Granger², Sébastien Février²; ¹Novae, France; ²XLIM, France; ³IHPS RAS, Russia; ⁴Fiber Optics Research Center RAS, Russia; ⁵CORIA, France. 93 nJ 130 fs pulses are generated in the short wavelength infrared (2.3 µm) by pumping large mode area photonic bandgap fiber by a high repetition rate (150 kHz) multi-µJ CPA at 2 µm.

MICS

10:30 -- 12:30 MM2C • Solid-State and Fiber Lasers and

Frequency Combs - Continuing

MM2C.4 • 11:30

428 W of pump power.

Comparative study of high power Tm:YLF and Tm:LLF slab lasers, Antoine Berrou¹, Daniel Morris¹, Oliver J. Collett¹, M.J. D. Esser¹; ¹EPS/IPAQS, Heriot-Watt Univ., UK. High brightness diode stack end-pumped Tm:YLF and Tm:LLF slab lasers are compared under identical pump conditions in continuous-wave regime. A maximum output power of 160 W was obtained for

MM2C.5 • 11:45

All-PM All-diode-pumped Mode-locked Holmium Fiber MOPA Laser System, Nikolai Tolstik^{1,3}, Ingrid K. Bakke¹, Evgeni Sorokin², Irina Sorokina^{1,3}; ¹Norges Teknisk Naturvitenskapelige Univ, Norway; ²Inst. of Photonics, Vienna Univ. of Technology, Austria; 3Atla Lasers AS, Norway. We report a first all-PM modelocked holmium-fiber MOPA, diode-pumped at 1150nm and generating at 2089nm linearly chirped picosecond pulses with 4.7 nJ pulse energy, 23 MHz repetition rate and 110 mW average output power.

MM2C.6 • 12:00

Nanojoule 100 fs Pulse at 3 µm Generated From a Fully Fusion-Spliced Fiber Laser, Hugo Delahaye1, Mathieu Jossent², Geoffroy Granger¹, Sébastien Février1; 187000, Univ. Limoges, CNRS, XLIM, UMR 7252, France; ²87700, Novae, France. We report on an all-fiber source of nanojoule 100-fs pulses at 3 µm based on the soliton frequency-shifting effect in a cascade of silica and germania fibers.

Orangerie B

EUV & X-ray

Presider: Jorge Rocca; Colorado State Univ., USA

Keynote

Sources, Cameron G. Geddes¹, Hai-En Tsai¹, Jeroen van

Tilborg¹, Csaba Toth¹, Jean-Luc Vay¹, Carl Schroeder¹,

incorporating compact plasma accelerators, scattering

plasma deceleration of the e-beam to mitigate shielding

Laser-Plasma Accelerator Driven Compact Photon

Eric Esarey¹, Wim Leemans¹; ¹Lawrence Berkeley

source at MeV energies is being developed,

National Lab, USA. A Thomson scattering photon

laser shaping and guiding for high brightness, and

Invited

High Brightness X-ray Sources Based on Laser

Accelerated Electrons, Ruxin Li¹, Wentao Wang¹,

Jiansheng Liu¹, Zhizhan Xu¹; ¹State Key Lab of High

Field Laser Physics, Shanghai Inst. of Optics and Fine

Mech., China. We demonstrated a MeV source based

on the Compton scattering of laser accelerated electron

beams. Meanwhile, a XUV-free electron laser based on

a 0.5GeV level laser electron accelerator is at the final

EM3B • Laser Plasma based Sources

14:00 -- 16:00

EM3B.1 • 14:00

needs.

EM3B.2 • 14:30

stage of experiments.

Orangerie A

MICS

HILAS

14:00 -- 16:00

HM3A • Laser Driven Particle Beams and Radiation Presider: Laszlo Veisz; Max-Planck-Institut fur Quantenoptik, Sweden

nvited

Laser-driven Particle Acceleration Performed with 4PW Laser at CoReLS, Chang Hee Nam^{2,1}; ¹Gwangju Inst. of Science & Technology, South Korea; ²Center for Relativistic Laser Science, Inst. for Basic Science, South Korea. A 20 fs, 4 PW Ti:sapphire laser with a repetition rate of 0.1 Hz was developed and its performance has been tested in laser-driven charged particle acceleration.

HM3A.2 • 14:30

High peak power lasers at INRS and application of laser -wakefield-based x-ray sources to global food security, Jean-Claude Kieffer¹, Sylvain Fourmaux¹, Emil Hallin²; ¹INRS-Energie Materiaux et Telecom, Canada; ²Global Inst. For Food Security, Univ. of Saskatchewan, Canada. We will describe our program in developing high throughput phase contrast screening system based on LWFA X-ray sources for plant imaging through an initiative led by the Global Inst. for Food Security (GIFS) at the U of Saskatchewan.

HM3A.3 • 14:45

Recent Progress on kHz Laser-Plasma Acceleration Driven by Single Cycle Laser Pulses, Jerome Faure^{1,2},

Dominykas Gustas¹, Diego Guenot^{1,3}, Aline Vernier¹, Agustin Lifschitz¹, Rodrigo B. Lopez-Martens¹, Frederik Böhle1; 1LOA, France; 2Physics Dept., Ecole Polytechnique, France; ³Lund Univ., Sweden. We have used kHz single cycle laser pulses in order to resonantly drive a plasma wakefield, resulting in the acceleration of relativistic electron beam with 5 MeV energies and >20 pC/shot charges. Simulations indicate that the electron bunch duration can be as short as 1 femtosecond, making this source unique for probing structural dynamics on ultrafast time scales.

EM3B.3 • 15:00

Plasma-based high-power x-ray pulse generation and amplification, Julia Mikhailova¹; ¹Princeton Univ., USA. We discuss plasma-based approaches to create, amplify, and compress laser-like, directed-energy radiation with extreme properties in intensity, wavelength, and pulse duration.

MM3C.4 • 15:00

Mid-IR integrated cavity based on Ge-rich graded SiGe waveguides with lateral Bragg grating, Qiankun

Liu¹, Joan Manel Ramirez¹, Vladyslav Vakarin¹, Jacopo Frigerio², Andrea Ballabio², Xavier Le Roux¹, Carlos Alonso-Ramos¹, Laurent Vivien¹, Giovanni Isella², Delphine Marris-Morini1; 1C2N, Universite Paris-Sud, France; ²L-Ness, Politecnico Di Milano, Italy. We report the design of a Bragg-mirror based Fabry-Perot cavity integrated on SiGe waveguides working at 7.25 µm. The demonstration of such resonant structures will be a major step forward for sensing applications in midinfrared.

14:00 -- 16:00

MM3C • Laser Materials and Structures for Mid-IR Presider: Richard Moncorge; Universite de Caen, France

MM3C.1 • 14:00

Ultra-fast Modulation of Quantum Cascade Lasers and Infrared Detectors, Carlo Sirtori¹; ¹Universite Paris-Diderot Paris VII, France. Mid-IR optoelectronic devices operating at ~ 10 µm wavelength, such as quantum cascade (QC) lasers, quantum well infrared photodetectors (QWIP) and QC detectors, are based on transitions between electronic bound states that have a very short excited state lifetime in the order of 1 ps. They have threofre a great potential as ultra fast devices with frequency bandwidth overcoming tens of GHz.

MM3C.2 • 14:30

Active Based-Metasurfaces for Mid-Infrared

Optoelectronics Devices, Laurent Boulley¹, Thomas Maroutian¹, Pierre Laffaille¹, Raffaele Colombelli¹, Lianhe Li², Edmund Linfield², Adel Bousseksou¹; ¹Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, C2N -Orsay, France; ²School of Electronic and Electrical Engineering, Univ. of Leeds, UK. We develop lowtemperature (450°C) deposition conditions for vanadium di-oxide phase change material. It permits implementation of tunable mid-infrared meta-surfaces on quantum cascade lasers based heterostructures.

MM3C.3 • 14:45

A compact Ge-rich graded-index SiGe platform with broadband low-loss propagation in the mid infrared, Joan Manel Ramirez¹, Qiankun Liu¹, Vladyslav Vakarin¹, Jacopo Frigerio², Andrea Ballabio², Xavier Le Roux¹, Laurent Vivien¹, Giovanni Isella², Delphine Marris-Morini¹; ¹Université Paris-Sud, France; ²L-Ness Lab, Politecnico di Milano, Italy. Ge-rich SiGe platforms with broadband and flat propagation loss of 2-3 dB/ cm from λ = 5.5 μm to 8.5 μm are demonstrated. Such mid-IR integrated circuits are promising for many application including sensing or telecommunications.

Orangerie B

Orangerie A

HILAS

EUV & X-ray

EM3B • Laser Plasma based Sources - Continuing

MICS

MM3C • Laser Materials and Structures for Mid-IR -

Fabrication and Spectroscopy Pr³⁺ doped Ceramic Calcium Lanthanum Sulfide for Mid-IR Laser Gain

Material, Brandon Shaw¹, Michael Hunt¹, Woohong

Brown², Steve Bowman¹, Jas Sanghera¹; ¹US Naval

Research Lab, USA; ²Univ. Research Foundation, USA.

Praseodymium doped Calcium Lanthanum Sulfide for

potential mid-IR laser gain material. Fabrication and spectroscopy of this new gain material will be

Kiim¹, Shyam Bayya¹, Darryl Boyd¹, Christopher

We report our progress in fabrication ceramic

14:00 -- 16:00 HM3A • Laser Laser Driven Particle Beams and

Radiation - Continuing

HM3A.4 • 15:15

THz-Pulse-Driven Electron Post-Accelerators, Zoltan Tibai¹, Márta Unferdorben¹, Szabolcs Turnár¹, Bálint Kovács¹, Jozsef A. Fulop¹, Gábor Almási¹, János Hebling¹; ¹Univ. of Pécs, Hungary. Because of their suitable wavelength and temporal period, THz pulses with extremely high field strength are ideal for driving particle accelerators. Here we give an overview of the possibilities and challenges of THz-pulse-driven electron post accelerators.

HM3A.5 • 15:30

Optimization of High-Field THz Pulse Generation by the Interaction of High Intensity Lasers with Aligned

Nanorod Targets, Sudipta Mondal^{1,2}, Oiliang Wei², Muhammad Ashiq Fareed², Subhendu Kahaly¹, Shuhui Sun², Tsuneyuki Ozaki²; ¹*ELI-HU Non-Profit Ltd., Hungary; ²ALLS, INRS-Energie Matériaux Télécomm., Canada.* High-field THz pulse generation by the interaction of high intensity femtosecond laser with aligned nanorods target have been investigated experimentally and theoretically which shows 13.8

HM3A.6 • 15:45

Enhancement of Laser-Driven Proton Beams Using Nanostructured Solid Foils, Simon Vallières^{1,2},

Massimiliano Scisciò^{1,3}, Simona Veltri^{1,3}, Marianna Barberio^{3,4}, Emmanuel d'Humières², Patrizio Antici^{1,4}; ¹/NRS-EMT, Inst. National de la Recherche Scientifique, Canada; ²CELIA, Univ. of Bordeaux, France; ³/NFN-RM1 & Univ. of Rome "La Sapienza", Italy; ⁴ELI-ALPS, Hungary. We present recent advances in the field of laser-driven particle acceleration, using nanostructured targets as proton source. Results from 2D PIC simulations along with experimental validations are shown. EM3B.4 • 15:30 Characterisation of Tuneable Gas Target Profiles for Laser Wakefield Acceleration, Vidmantas Tomkus¹, Valdas Girdauskas¹², Juozas Dudutis¹, Valdemar Stankevic¹, Gediminas Raciukaitis¹; '*Center for Physical Sciences and Tech., Lithuania;* ²Vytautas Magnus Univ.,

Lithuania. In this report, tuneable gas target profiles for Laser Wakefield Acceleration controlled by fused silica micronozzle arrays and annular nozzles were simulated, manufactured by 3D laser inscription and characterised using interferometry and gas density reconstruction.

EM3B.5 • 15:45

14:00 -- 16:00

Carrier-Envelope-Phase Stable Attosecond Pulse Generation Based on Laser-Plasma Electron Source,

Zoltan Tibai¹, Gyorgy Toth¹, Anett Nagyváradi¹, Ashutos Sharma², Jozsef A. Fulop¹, Gábor Almási¹, János Hebling¹, ¹Univ. of Pécs, Hungary; ²ELI-ALPS, Hungary. A laser-plasma accelerator based carrier-envelopephase stable attosecond source is investigated numerically. Pulses with tens-of-nJ energy and 90 to 240 attosecond duration are predicted in the 30–120 nm wavelength range.

MM3C.6 • 15:30

14:00 -- 16:00

MM3C.5 • 15:15

Continuina

Parametric Quantum-dash Source Around 3 µm, Alice Bernard^{1,2}, Marco Ravaro¹, Ivan Favero¹, Michel Krakowski³, Olivier Parillaud³, Bruno Gérard³, Jean-Michel Gérard², Giuseppe Leo¹; ¹Université Paris 7, France; ²INAC, Commissariat à l'Energie Atomique, France; ³TRT, III-V Lab, France. Based on an accurate characterization of InGaAsP waveguides in the mid-IR range, we design a tunable source around 3 µm based on intracavity spontaneous down-conversion (SPDC) in a telecom laser diode. Fabrication is underway.

MM3C.7 • 15:45

Femtosecond laser writing of the depressed cladding buried channel waveguides in ZnS crystal, Andrey G. Okhrimchuk^{2,1}, Michael Smayev², Vladislav Likhov², Irina T. Sorokina³, Evgeni Sorokin⁴, Nikolai Tolstik³; ¹*Fiber Optics Research Center of RAS, Russia;* ²*International Centre of Laser Tech., D. Mendeleyev Univ. of Chemical Tech. of Russia, Russia;* ³*Dept. of Physics, Norwegian Univ. of Science and Tech., Norway;* ⁴*Institut für Photonik, TU Wien, Austria.* Direct laser writing of buried channel waveguides in ZnS single crystal is investigated. A depressed cladding wavegiude with propagation loss of 0.62 dB/cm at 1030 nm was inscribed. Spectral broadening at the waveguide output was found under pumping with

16:00—16:30 • Coffee Break with Exhibitors, Foyer Orangerie

Orangerie B

Orangerie A

HILAS

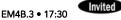
16:30 -- 18:30 HM4A • Ultrafast Dynamics I *Presider:* Jean-Claude Kieffer; *NRS-Energie Materiaux et Telecom, Canada*

Invited

HM4A.1 • 16:30 Relativistic Laser-Plasma Interactions in Solid Density Hydrogen Jet Targets, Sebastian Goede¹; 'European XFEL, Germany. The talk presents results on laserdriven proton acceleration from cryogenic liquid jet targets in the relativistic regime. Technical challenges and the impact of laser and target parameters on the proton beam properties will be discussed.

HM4A.2 • 17:00

Two-Dimensional Control of Electron Localization in H₂ Dissociation with Elliptically Polarized Few-Cycle Laser Pulses, Sarayoo Kangaparambil³, Vaclav Hanus³, Seyedreza Larimian³, Xinhua Xie³, Markus Schoffler¹, Gerhard Paulus², Andrius Baltuska³, Markus Kitzler³; ¹Institut für Kemphysik, Germany; ²Friedrich-Schiller-Universität, Germany; ³TU Wien, Austria. We experimentally achieve two-dimensional CEP-control of bond breaking in H₂ dissociation with elliptically polarized pulses. The lab and molecular frame of reference proton ejection asymmetries are compared.


HM4A.3 • 17:15

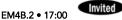
Electron Vortex States in High-Energy Ionization, Katarzyna Krajewska¹, Felipe Cajiao V\'elez¹, Jerzy Kami\'nski¹; '*Univ. of Warsaw, Poland.* The generation of electron vortex states of large topological charge in high-energy ionization is demonstrated. To this end, the fully relativistic Dirac theory is used to determine the conditions to obtain such states.

HM4A.4 • 17:30

The Molecular Attoclock: Sub-cycle Control of Electronic Dynamics During H₂ Double Ionization,

Vaclav Hanus¹, Sarayoo Kangaparambil¹, Seyedreza Larimian¹, Xinhua Xie¹, Markus Schoffler², André Staudte³, Gerhard Paulus⁴, Andrius Baltuska¹, Markus Kitzler¹; ¹TU Wien, Austria; ²Institut für Kernphysik, J.W. Goethe-Universität, Germany; ³Joint Attosecond Science Lab. of the National Research Council and the Univ. of Ottawa, Canada; ⁴Friedrich-Schiller-Universität Jena, Germany. We introduce and employ the molecular attoclock method. This allows us to simultaneously trace the nuclear and electron dynamics during H₂ fragmentation, and to CEP-control the twoelectron emission dynamics on sub-cycle time scales.

Development of Experimental Platform for Laser Wakefield Acceleration of Electrons and Possible Applications, Yuji Sano¹; ⁷ImPACT Program, Japan Science and Tech. Agency, Japan. Laser experimental facilities were established for achieving stable electron acceleration and generating X-rays with a monolithic undulator. Compact diode-pumped solid-state lasers have also been developed to downsize the facilities and promote applications.


EUV & X-ray

16:30 -- 18:45 EM4B • Free-electron Laser and Electron Beam Sources I

Presider: Tetsuya Ishikawa; RIKEN, Japan

EM4B.1 • 16:30 FERMI: the first externally seeded Free Electron Laser in the extreme ultraviolet and soft X-ray spectral regions, Luca Giannessi^{1,2}; ¹Elettra Sincrotrone Trieste, Italy; ²ENEA, Italy. We present an overview of FERMI, the seeded Free Electron Laser facility at the ELETTRA-Sincrotrone Lab (Trieste): two FELs operating in the HGHG mode, characterized by desirable properties, such as stability, low jitter and longitudinal coherence.

Towards Laser Plasma Acceleration Based Free Electron Laser and First Results on COXINEL, Thomas André¹; ⁷Synchrotron SOLEIL, France. The COXINEL project aims at demonstrate the Free electrons laser amplification using Laser plasma accelerator. The control of electron beam properties of such accelerators, permit an observation of the spontaneous emission light from the udulator. MICS

16:30 -- 18:30

MM4C • Remote Sensing and Imaging Presider: Irina Sorokina; Norges Teknisk Naturvitenskapelige Univ., Norway

MM4C.1 • 16:30 Mid-Infrared Imaging using Upconversion – Principles and Applications, Peter Tidemand-Lichtenberg¹, Peter John Rodrigo¹, Christian Pedersen¹; ¹Danmarks Teknishe Universitet, Denmark. Different schemes for mid-infrared hyperspectral imaging using upconversion detection is implemented and compared in terms of spectral coverage, field-of-view, resolution and speed. Both broadband and narrowband, continuous wave and pulsed imaging systems are considered.

MM4C.2 • 17:00

Long-wave Infrared Upconverter, Yu-Pei Tseng¹, Christian Pedersen¹, Peter Tidemand-Lichtenberg¹; ⁷*Technical Univ. of Denmark, Denmark.* An upconverter is demonstrated for long-wave infrared (LWIR) detection, potentially used for LWIR spectroscopy. The LWIR signal is frequency converted using an AgGaS₂ crystal. This allows for efficient, highspeed detection using a standard silicon detector.

MM4C.3 • 17:15

Atmospheric CO₂ sensing by DIAL using a high energy, high purity and high stability parametric source, Myriam Raybaut¹, Erwan Cadiou^{1,3}, Jean-Baptiste Dherbecourt¹, Jean-Michel Melkonian¹, Antoine Godard¹, Jacques Pelon²; ¹Onera, The French Aerospace Lab, France; ²LATMOS, France; ³CNES, France. We report on the development of a tunable parametric source emitting 10-mJ, 10-ns-long, Fouriertransform-limited pulses with high frequency stability, and its implementation in a direct detection lidar operating at 2051 nm for carbon dioxide sensing.

MM4C.4 • 17:30

Point-Spread Function Engineering in Upconversion Imaging, Saher Junaid¹, Peter John Rodrigo¹, Peter Tidemand-Lichtenberg¹, Christian Pedersen¹; ⁷DTU FOTONIK, Denmark. We demonstrate an upconversion based 4-f imaging system and investigate how its point-spread function can be altered by spatially manipulating the amplitude and/or phase profiles of the otherwise Gaussian mixing field.

Orangerie A

HILAS

EUV & X-ray

16:30 -- 18:45 EM4B • Free-electron Laser and Electron Beam Sources - Continuing

MICS

S/N Ratio of an Upconversion Detector Dominated by

16:30 -- 18:30 MM4C • Remote Sensing and Imaging -Continuing

Upconverted Spontaneous Parametric Down-

ApS, Denmark. We designed an upconversion

the dependence of upconversion efficiency and

upconverted spontaneous parametric down-

conversion noise on pump power.

conversion Noise, Lichun Meng¹, Lasse Høgstedt²,

Peter Tidemand-Lichtenberg¹, Christian Pedersen¹, Peter John Rodrigo¹; ¹DTU Fotonik, Denmark; ²NLIR

detector (UCD) for 1575 nm operation. The signal-to-

noise ratio of the UCD is investigated by considering

16:30 -- 18:30 HM4A • Ultrafast Dynamics I -Continuing

HM4A.5 • 17:45

Emergence of a Higher Energy Structure in Strong Field Ionization with Inhomogeneous Laser Fields, Marcelo F. Ciappina^{8,1}, Jose Perez-Hernández², Lisa Ortmann³, Johannes Schötz¹, Alexis Chacón⁴, G Zeraouli², Matthias Kling^{1,5}, Luis Roso², Maciej Lewenstein^{4,6}, Alexandra Landsman^{3,7}; ¹Max Planck Inst. for Quantum Optics, Germany; ²CLPU, Spain; ³MPIPKS, Germany; ⁴ICFO, Spain; ⁵LMU, Germany; ⁶ICREA, Spain; ⁷Max Planck POSTECH, South Korea; 8 ELI-Beamlines, Czechia. We demonstrate that using a time-varying spatial dependence in the laser electric field creates a prominent higher energy peak in the photoelectron spectra, originates by direct electrons ionized within a narrow time window.

HM4A.6 • 18:00

Frustrated Double Ionization of Argon Atoms,

Seyedreza Larimian¹, Sonia Erattupuzha¹, Christoph Lemell², Joachim Burgdörfer², Andrius Baltuška¹, Markus Kitzler¹, Xinhua Xie¹; ¹Photonics Inst., Technische Universität Wien, Austria; ²Inst. for Theoretical Physics, Technische Universität Wien, Austria. We report kinematically complete measurements of frustrated double ionization of argon atoms with a reaction microscope. Experimental results show much higher electron trapping probability during the strong-field double ionization than that during the single ionization.

HM4A.7 • 18:15

Sub-wavelength trapping and accelerating of neutral atoms with intense light carrying orbital angular

momentum, Jamal Berakdar¹, Dominik Schulze¹; ¹Martin Luther Univ. Halle Wittenberg, Germany. We study the trapping and steering of neutral atoms in focused, highintensity optical vortices. Appropriate combinations of Laguerre-Gaussian beams result in sub-wavelength, dynamical radial traps for atoms, controllable by the waist and the wavelength of the laser pulses.

Invited EM4B.4 • 18:00

Nano-modulated electron beams via electron diffraction for coherent x-ray generation, Emilio A. Nanni¹; ¹SLAC National Accelerator Lab, USA. A new method for generation of relativistic electron beams with current modulation on the nanometer scale will be presented in addition to its use for coherent x-ray generation, performance parameters and ongoing preliminary experiments.

MM4C.6 • 18:00

MM4C.5 • 17:45

Narrow-Linewidth Picosecond Optical Parametric Oscillator for Backscatter Absorption Gas Imaging,

Guillaume Walter¹, Jean-Baptiste Dherbecourt¹, Jean-Michel Melkonian¹, Myriam Raybaut¹, Didier Henry¹, Cyril Drag², Antoine Godard¹; ¹ONERA - The French Aerospace Lab, France; ²aboratoire de Physique des Plasmas, France. A picosecond OPO combining an aperiodically-poled nonlinear crystal and a chirped VBG is used for backscatter absorption gas imaging of N₂O at atmospheric pressure. The tunability is 215 nm around 3.82 µm in 130 ms.

MM4C.7 • 18:15

7.3-10.5 µm Tunable Single-frequency Parametric Source for Standoff Detection of Gaseous Chemicals, Julie Armougom¹, Jean-Michel Melkonian¹, Myriam Raybaut¹, Jean-Baptiste Dherbecourt¹, Guillaume Gorju¹, Antoine Godard¹, Riaan Cotzee², Valdas Pašiškevičius², Jiri Kadlčák³; ¹ONERA - The French Aerospace Lab, France; ²Dept. of Applied Physics, Royal Inst. of Technology, Sweden; ³CBRN Protection Division, VVU, Czechia. We report on the first singlefrequency parametric source tunable in the longwave infrared with an output energy of 1 mJ. The source is then used in a lidar to detect chemicals in the vapor phase.

EM4B.5 • 18:30

XFEL based on Tapered RF Undulators Driven by Laser Plasma Wakefield Accelerator, Sergey Antipov¹, A Liu¹, A Vikharev², A Savilov², S Kuzikov^{1,2}; ¹Euclid TechLabs LLC, USA; ²Inst. of Applied Physics, Russian Academy of Sciences, Russia. Microwave undulators are proposed for FELs due to large beam aperture and short undulator period. The development of tapered microwave undulator for EUV FEL is presented. Tapering allows to achieve an unprecedented 10% conversion efficiency.

18:00 -- 20:00 Extreme Light Infrastructure (ELI) — Future and Opportunities

A pan-European project, ELI is moving into full operational mode in 2018. Attend two special sessions to learn about operational aspects of ELI and presentations from researchers working at the three facilities.

ELI-ERIC and Future Experimental Access to ELI Facilities

Carlo Rizutto, ELI Delivery Consortium AISBL, Belgium

The three research centers of ELI are now entering the operational phase, and will be integrated into a single European Research Infrastructure, ELI-ERIC. User applications and access will be managed through a single access point and will be based on the quality of proposals as evaluated by international review panels. Rizzuto, Director General of the ELI Delivery Consortium, on behalf of all the facilities, updates on the current status of ELI ERIC, organisational planning and governance.

ELI Facilities: Progress on Construction and Commissioning

Roman Hvezda, ELI-Beamlines, Czech Republic

The three ELI facilities are all installing and commissioning systems. The progress and current state of each project will be reported along with a look at the remaining challenges and milestones. Hvezda, ELI-Beamlines Project Manager presents a high-level view of all the ELI construction

ELI Systems Availability and the User Programme Karoly Osvay, *ELI-ALPS, Hungary*

The Attosecond Light Pulse Source (ALPS) facility of the pan-European ELI project is designed to build a laser based research infrastructure in which light pulses of few optical cycles are generated and used for basic and applied research. Osvay, the Research Technology Director at ELI-ALPS will present an overview of the status of systems and the planned availability for each of those systems across the three facilities. He will highlight new developments, testing and technical opportunities in the coming months and years.

User Access at ELI ERIC: Opportunities for World Leading Science

Dan Stutman, ELI-NP, Romania

Overview of the approach to User Access at ELI ERIC. User applications and access will be managed through a single access point and will be based on the quality of proposals as evaluated by international review panels.

Panel Discussion Panel Moderators:

Gregory Quarles, The Optical Society, USA Constantin Haefner, Lawrence Livermore National Lab, USA Panel Members:

Roman Hvezda, ELI-Beamlines, Czech Republic; Karoly Osavay, ELI-ALPS, Hungary, Carlo Rizzuto, ELI-ERIC, Belgium;

The Optical Society (OSA) and the OSA Foundation (OSAF) have partnered with Cheeky Scientist to launch the Career Calibrator, a new career training platform with world-class resources to support your professional development goals.

This members-only benefit provides exclusive access to:

- PROFESSIONAL DEVELOPMENT content for students and professionals who are job searching or looking to transition from academia to industry.
- GUIDANCE on building a career transition plan, improving your resume/cv, interview skills and online presence.
- GENERAL RESOURCES for building transferrable skills, conducting salary negotiations, navigating immigration laws and more.

For more information visit osa.org/careercalibrator

07:30—16:00 • Registration, Bartholdi C

Orangerie CDE

HILAS

Orangerie B

EUV & X-ray

08:00 -- 10:00

HT1A • High intensity lasers at average power Presider: Eiji Takahashi; RIKEN, Japan

HT1A.1 • 08:00

Cost-Effective Pumping Source for 1 TW-class OPCPA, Paulius P. Mackonis¹, Aleksej Rodin^{1,2}, Augustinas Petrulenas¹; ¹*Center for Physical Sciences and Tech., Lithuania*; ²*Ekspla, Lithuania.* We report on the current development state of a compact and cost-effective pumping source configuration for 1 TW-class OPCPA containing a fiber seed laser, two-cascaded double-

HT1A.2 • 08:15

compressor.

High Power Optical Parametric Amplifier Driven by a

pass CPA based on Yb:YAG rods and a pulse

Sub-ps Yb:Thin-Disk System, Alexander-Cornelius Heinrich¹, Jonathan Fischer¹, Dominik-Pascal Ertel¹, Alfred Leitenstorfer¹, Daniele Brida¹; ⁷Dept. of Physics and Center for Applied Photonics, Univ. of Konstanz, Germany. 615fs pulses with 17mJ energy at 3kHz repetition rate are generated by an Yb:thin-disk laser to pump a mJ-class near-IR OPA delivering 25fs pulses. This system targets the generation of intense THz radiation.

HT1A.3 • 08:30

Stabilization of a High-energy Optical Parametric Amplifier with High-speed Adaptive Deformable

Lenses, Martino Quintavalla⁴, Anna Gabriella Ciriolo^{1,2}, Jacopo Mocci³, Matteo Negro¹, Michele Devetta¹, Riccardo Muradore³, Salvatore Stagira², Stefano Bonora⁴, Caterina Vozzi¹, ¹/IFN-CNR, Italy; ²Dipartimento di Fisica, Politecnico di Milano, Italy; ³Dipartimento di Informatica, Università di Verona, Italy; ⁴IFN-CNR, Italy. We report on the first application of adaptive deformable lenses to the stabilization of a high-energy mid-IR parametric source. Fluctuations of output pulse intensity and CEP were significantly suppressed by the adaptive optics system.

HT1A.4 • 08:45

Scaling High Intensity Laser Systems from State-of-the-Art to MW Class Enabling Next Generation Light Sources, Andy J. Bayramian¹, David Alessi¹, Diana Chen¹, Kyle Chesnut¹, Alvin Erlandson¹, Thomas Galvin¹, Dan Mason¹, Hoang Nguyen¹, Margareta Rehak¹, Paul Rosso¹, Kathleen Schaffers¹, Craig Siders¹, Emily F. Sistrunk¹, Thomas Spinka¹, Constantin L. Haefner¹; *¹Lawrence Livermore National Lab, USA*. Evolving discovery science to deliver a continuous flux of secondary radiation for applications necessitates a new perspective on laser systems design to achieve robust operational capability at high average power.

08:00 -- 10:00 ET1B • Compact Sources I

Presider: Bob Hettel; Stanford Univ., USA

ETIS.1 • 06:00 **Developments in X-ray and DUV Spectral Imaging in Heritage Science**, Loic Bertrand¹; ⁷Synchrotron SOLEIL, *France*. Imaging from high-brightness sources (synchrotrons, compact Lab sources) provide new opportunities for the study of the heterogenous systems encountered in Heritage science. We will present and discuss recent studies on objects and samples from archaeology, paleontology and the arts that exemplify these exciting possibilities.

ET1B.2 • 08:30

Compact gain-saturated soft X-ray lasers down to 6.85 nm and gain down to 5.85 nm and enabling pump laser, Shoujun Wang¹, Yong Wang¹, Alex Rockwood¹, Mark Berrill², Vyacheslav Shlyaptsev¹, Jorge J. Rocca¹; ¹Colorado State Univ., USA;²Oak Ridge National Lab, USA. We have extended the wavelength of compact, repetitive, gain-saturated x-ray lasers to 6.89 nm in Nilike Gd, and observed amplification in several lower wavelength transitions down to 5.9 nm in Ni-like Dy ions.

presented.

MT1C.2 • 08:30

Frequency Comb Quantum Cascade Lasers, Olivier Landry¹, Yves Bidaux², Jérôme Faist², Stéphane Blaser¹, Tobias Gresch¹, Richard Maulini¹, Antoine Müller¹, Ilia Sergachev¹; ¹Alpes Lasers, Canada; ²ETH Zürich, Switzerland.

Optical Frequency Combs are devices emitting light on a wide spectrum consisting of equidistant peaks in frequency space. They can be used as rulers in the frequency domain for Frequency Comb Spectroscopy.

ET1B.3 • 08:45

Compact arrangement for femtosecond laser induced generation of broadband hard x-ray pulses, Rene

Nome¹, CARLOS GILES¹, Rafael Celestre¹, Kelin Tasca¹, CARLOS Dias¹, Rafael Vescovi¹, Guilherme Faria¹, Guilherme Ferbonink¹; ¹State Univ. of Campinas, Brazil. We present details of compact x-ray generation setup design, construction and spatio-temporal femtosecond laser pulse characterization. We show measurements of femtosecond laser induced x-ray fluorescence spectra and time traces, together with analysis and discussion.

MT1C.3 • 08:45

Characterization of infrared pulses using upconversion, Laurent R. Huot^{1,2}, Peter Moselund¹, Peter Tidemand-Lichtenberg², Christian Pedersen²; ¹NKT Photonics, Denmark; ²Technical Univ. of Denmark, Denmark. We demonstrate and discuss the advantages of a novel system performing time resolved spectral characterization of mid-infrared supercontinuum pulses using electronically synchronized delay-tuned pulsed upconversion.

Orangerie A

MICS

08:00 -- 10:00

MT1C • MIR and THz Sources Presider: Sergey Mirov; Univ. of Alabama at Birmingham, USA

for Advanced Photonics, RIKEN, Japan. Nonlinear

superior characteristics with wide range tuning,

the recent state of art achievement of THz-wave

generation/ detection. Importance of nonlinear

materials, and their developements are also

optics based monochromatic THz-wave sources have

spectral purity, and high-power capability. I will report

Orangerie B

Orangerie A

HILAS

112 10

08:00 -- 10:00 HT1A • High intensity lasers at average power -Continuing

HT1A.5 • 09:15 High flux soft X-ray source driven on Yb laser amplifier for resonant magnetic diffraction application, Guangyu Fan¹, Vincent Cardin², Katherine Legare², Edgar Kaksis¹, Giedrius Andriukaitis¹, Audrius Pugzlys¹, Tsuneto Kanai¹, Bruno Schmidt³, Pervak Vladimir^{4,5}, François Légaré², Andrius Baltuska¹, Tadas Balciunas^{1,6}; ¹Inst. of Photonics, TU Wien, Austria; ²Institut National de la Recherche Scientifique, Canada; 3 few-cycle, Inc, Canada; ⁴Ludwig-Maximilian Universität München, Germany; ⁵Ultrafast Innovations GmbH, Germany; ⁶GAP -Biophotonics, Université de Genève, Switzerland. We demonstrated high flux table-top 220eV HHG source (>10⁹photons/s/1% bandwidth) driven directly by a <20fs, 10mJ, kHz Yb laser amplifier system. Resonant magnetic diffraction of Terbium N-edge at 155eV is performed first time using this soft-x-ray source.

HT1A.6 • 09:30

Multi-kW Thin-Disk Amplifiers, Catherine Teisset¹, Christoph Wandt¹, Marcel Schultze¹, Sandro Klingebiel¹, Matthias Häfner¹, Stefan Prinz¹, Sebastian Stark¹, Christian Grebing¹, Jan-Philipp Negel², Helge Höck², Michael Scharun², Thomas Dietz², Dominik Bauer², Aleksander Budnicki², Christian Stolzenburg², Dirk Sutter², Aleksander Killi², Thomas Metzger¹; ¹*TRUMPF Scientific Lasers, Germany;* ²*TRUMPF Laser, Germany.* We report on commercial picosecond thin-disk regenerative amplifiers with up to 200-mJ pulses and 1kW. Using a monolithic mirror array in a multipass scheme, a ns seed was scaled to 3kW. By merging both technologies and using nonlinear compression, sub-50fs pulses are feasible at a multi-kW level.

HT1A.7 • 09:45

Pump-induced wavefront aberrations in Yb³⁺-doped

materials, Issa Tamer^{1,2}, Sebastian Keppler^{1,2}, Marco Hornung^{1,2}, Jörg Körner², Joachim Hein^{1,2}, Malte Kaluza^{1,2}, ¹Helmholtz-Institut Jena, Germany; ²Inst. of Optics and Quantum Electronics, Germany. An extensive investigation, including all contributions and relevant material parameters, on the full spatiotemporal profiles of pump-induced wavefront aberrations in Yb-doped materials is described, with an excellent agreement between simulated and experimental results.

EUV & X-ray

MICS

MT1C • MIR and THz Sources - Continuing

08:00 -- 10:00 ET1B • Compact Sources I - Continuing

ET1B.4 • 09:00

Towards Millijoule Narrowband Terahertz Generation Using Chirp-and-Delay in Periodically Poled Lithium Niobate, Spencer W. Jolly^{1,2}, Frederike Ahr^{3,4}, Nicholas Matlis³, Vincent Leroux^{1,2}, Timo Eichner¹, Koustuban Ravi⁵, Hideki Ishizuki⁶, Takunori Taira⁶, Franz X. Kaertner^{3,4}, Andreas Maier¹; ¹*CFEL and Univ. of Hamburg, Germany;* ²*ELI - Beamlines, Czechia;* ³*DESY and CFEL, Germany;* ⁴*Dept. of Physics, Univ. of Hamburg, Germany;* ⁵*RLE, MIT, USA;* ⁴*Inst. for Molecular Sciences, National Inst. of Natural Science, Japan.* We show improvement of narrowband terahertz generation in periodically poled lithium niobate crystals using chirped-and-delayed pulses from a high energy laser. THz pulses of combined energy above 0.5 mJ at 0.361 THz are generated.

ET1B.5 • 09:15

LUX – A Plasma-Driven Undulator Beamline, Andreas R. Maier¹, Niels Delbos¹, Irene Dornmair¹, Timo Eichner¹, Björn Hubert¹, Lars Hübner¹, Sören Jalas¹, Spencer W. Jolly^{1,2}, Manuel Kirchen¹, Vincent Leroux^{1,2}, Sebastian Mahncke¹, Philipp Messner¹, Matthias Schnepp¹, Maximilian Trunk¹, Paul A. Walker^{1,3}, Christian Werle¹, Paul Winkler^{3,1}; ¹Univ. of Hamburg, Germany; ²ELI Beamlines, Czechia; ³DESY, Germany. We present experimental results from the LUX Beamline, that recently generated first X-rays at few-nm wavelength from a plasma-driven undulator. We report on stable laser and beamline operation and discuss first experiments.

ET1B.6 • 09:30

High photon flux XUV source driven by high repetition rate > 100 kHz fiber laser, Aura I. Gonzalez^{1,4}, Loïc

Table 7 100 krl2 inder laser, Adra I. Golfzaie2**, Loic Lavenu^{1,3}, Florent Guichard³, Yoann Zaouter³, Patric Georges¹, Marc Hanna¹, Theirry Ruchon²; *1Laboratoire Charles Fabry, Institut d'Optique Graduate School, France; ²LIDYL, CEA, CNRS, Unversité Paris-Saclay, France; ³Amplitude Systemes, France, ⁴Amplitude Technologies, France.* We report on the advantage of Yb-lasers at high repetition rate (>100kHz) to drive a XUV source based on HHG. We discuss the optimization of XUV parameters respect to the driving laser postcompression (down to-14fs).

ET1B.7 • 09:45

Commissioning and Initial Experiments of an EUV

Capillary Discharge Laser, Sarah A. Wilson¹, Greg Tallents¹; 'York Plasma Inst., UK. The commissioning and initial experiments with an extreme ultra-violet (EUV) capillary discharge laser (46.9nm) are presented. We investigate the reflectivity and focusability of gold mirrors at 46.9nm and the ability of the EUV laser to ablate solid targets.

MT1C.4 • 09:00

08:00 -- 10:00

Temperature- and Current-dependent Repetition Frequency of a 2 µm InGaSb/AlGaAsSb Mode-locked Quantum Well Laser, Xiang Li¹, Hong Wang¹, Zhongliang Qiao¹, Xin Guo¹, Wanjun Wang¹, Geok Ing Ng¹, Chongyang Liu²; *'School of Electrical and Electronic Engineering, Nanyang Tech. Univ., Singapore*; ²*Temasek Labs, Nanyang Tech. Univ., Singapore.* Mode locking is achieved in a 2 µm monolithic GaSb-based laser. The repetition frequency of the laser, as a function of temperature and injection current, is investigated. The reasons for the frequency tuning are discussed.

MT1C.5 • 09:15

Characteristic Temperature of a 2 μm InGaSb/

AlGaAsSb Mode-locked Quantum Well Laser, Xiang Li¹, Hong Wang¹, Zhongliang Qiao¹, Xin Guo¹, Wanjun Wang¹, Geok Ing Ng¹, Chongyang Liu²; ¹School of Electrical and Electronic Engineering, Nanyang Technological Univ., Singapore; ²Temasek Labs, Nanyang Technological Univ., Singapore, Mode locking is achieved in a 2 µm GaSb-based laser up to 60 °C. The laser has a T₀ of ~82 K at room temperature, and the absorber bias voltage has little effect on T₀.

MT1C.6 • 09:30

High power Y-branch MOPA-system with 9.7 nm wavelength tunability for IR up-conversion detection, Mahmoud Tawfieq¹, André Müller¹, Jörg Fricke¹, Pietro Della Casa¹, Peter Ressel¹, Arnim Ginolas¹, David Feise¹, Bernd Sumpf¹, Günther Tränkle¹; ¹Ferdinand-Braun-Institut, Germany. A high power widely tunable master oscillator power amplifier (MOPA) laser system will be presented, which will serve as a single pass pump source for IR up-conversion detection and hyperspectral imaging.

MT1C.7 • 09:45

Tunable 2.4 – 4.4 µm coherent pulse source for seeding OPCPA, Scott Domingue¹, David G. Winters¹, Matthew Kirchner¹, Sterling Backus^{1,2}, Seth Cousin^{1,3}, Henry Kapteyn^{1,3}, ¹Kapteyn-Murnane Labs, USA; ²Electrical and Computer Engineering, Colorado State Univ., USA; ³JILA and Dept. of Physics, Univ. of Colorado, USA. We present a monolithic, ultrafast, mid -infrared laser designed specifically for seeding an optical parametric chirped pulse amplifier. The compact laser system output nearly transform-limited pulses with MW class peak powers at repetition rates of ≥1MHz.

optical parametric c compact laser syste

10:00—10:30 • Coffee Break with Exhibitors, Foyer Orangerie

Orangerie B

Orangerie A

HILAS

10:30 -- 12:30

HT2A • Relativistic Intensity generation and experiments

Presider: Giuseppe Sansone; Albert-Ludwigs-Universität Freiburg, Germany

HT2A.1 • 10:30

Sub-5-fs laser-driven nanophotonics in the relativistic

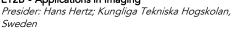
intensity regime, Laszlo Veisz^{2,1}, Daniel Cardenas^{1,4}, Laura Di Lucchio³, Tobias Ostermayr^{1,4}, Luisa Hofmann^{1,4}, Matthias Kling^{1,4}, Jörg Schreiber^{1,4}, Paul Gibbon^{3,5}; ¹Max-Planck-Institut fur Quantenoptik, Sweden; Umea Univ, Sweden; ³Inst. for Advanced Simulation, Forschungszentrum Jülich GmbH, Germany; ⁴Ludwig-Maximilian-Universität München, Germany; KU Leuven, Belgium. We investigated the interaction of nanometric tungsten targets with ultra-relativistic-intensity sub-5-fs laser pulses. Electrons accelerated to multi-MeV energy with electric fields exceeding the TV/m range and dependence on the laser waveform (carrierenvelope phase) were observed.

HT2A.2 • 10:45

Time resolved dynamics of sub-micron liquid sheet interaction with a relativistic intensity kHz laser, Enam Chowdhury^{2,3}, John Morrison¹, Kyle Frische¹, Scott Feister⁴, Joseph Smith², Chris Orban², William Roquemore⁵, ¹Innovative Scientific Solutions, Inc., USA; ²Physics, The Ohio State Univ., USA; ³Intense Energy Solutions LLC, USA; ⁴Flash Center, Univ. of Chicago, USA; ⁵Aerospace Systems Directorate, Air Force Research Lab, USA. Time resolved dynamics of a submicron liquid sheet interacting with a 10¹⁹ Wcm⁻² kHz laser focus at 780 nm wavelength, accelerating MeV electrons and protons, was captured using shadowgraphy with synchronized 80 fs pulses.

HT2A.3 • 11:00

Relativistic-Intensity Near-Single-Cycle KHz Laser Driver, Marie Ouillé¹, Frederik Boehle¹, Maxence


Thévenet⁵, Maine Odine, Théderik Doeine, Mazente Thévenet⁵, Maimouna Bocoum¹, Aline Vernier¹, Magali Lozano¹, Jean-Philippe Rousseau¹, Aurélie Jullien¹, Stefan Haessler¹, Mate Kovacs⁴, Peter Simon³, Tamas Nagy^{6,2}, Rodrigo B. Lopez-Martens¹; *1Laboratoire d'Optique Appliquée, France; ²Laser Zentrum*, *Germany; ³Laser-Laboratorium Gottingen, Germany;* ⁴*ELI Attosecond Light Pulse Source, Hungary;* ⁵*Lawrence Berkeley National Lab, USA;* ⁶*Institut für Quantenoptik, Germany.* We generate high-temporalcontrast, CEP-stable, 1.3-optical-cycle laser pulses with TW peak power at 1 kHz, which are then used to drive relativistic attosecond sufface-plasma dynamics.

HT2A.4 • 11:15 Coherent Pulse Stacking Amplification – An Enabling Pathway Towards Fiber Based Multi-TW Peak Power Sources, Almantas Galvanauskas¹; ¹Univ. of Michigan, USA. Abstract not provided.

EUV & X-ray

10:30 -- 12:30 ET2B • Applications in Imaging

ET2B.1 • 10:30

Nanoscale chemical imaging by extreme ultraviolet laser ablation time of flight spectrometry, Carmen S. Menoni¹; ¹Colorado State Univ., USA. Elemental composition imaging in inorganic solids with a spatial resolution of 80 nm and actinide trace analysis by extreme ultraviolet laser ablation time-of-flight mass spectrometry are demonstrated.

Invited

ET2B.2 • 11:00

Sub-wavelength Resolution, Wide Field-Of-View, and Quantitative 13nm Imaging in Reflection and Transmission with a Tabletop High Harmonic Source, Christina Porter¹, Michael Tanksalvala¹, Dennis Gardner¹, Giulia Mancini¹, Michael Gerrity¹, Galen Miley², Xiaoshi Zhang³, Naoto Horiguchi⁴, Elisabeth Shanblatt¹, Benjamin Galloway¹, Yuka Esashi¹, Charles Bevis¹, Robert Karl¹, Peter Johnson¹, Daniel Adams¹, Henry Kapteyn^{1,3}, Margaret Murnane^{1,3}; ¹Univ. of Colorado at Boulder, USA; ²Chemistry, Northwestern Univ. , USA; ³KMLabs, USA; ⁴imec, Belgium. We demonstrate highresolution and wide field-of-view imaging using tabletop 13nm HHG sources in transmission and reflection. Additionally, we present preliminary simulations and results of complex 13nm imaging reflectometry allowing highly-sensitive, non-destructive 3D composition determination

MICS

10:30 -- 12:30

$\mbox{MT2C}$ \bullet Nonlinear Optical Materials and Structures for Mid-IR

Presider: Delphine Marris-Morini; Univ. de Paris-Sud, France

MT2C.1 • 10:30

Magnitude of the nonlinear coefficients of the

monoclinic crystal BaGa₄Ser, Benoit Boulanger^{2,1}, Feng Guo^{1,2}, Patricia Segonds^{2,1}, Jerome Debray¹, Valeriy Badikov³, Vladimir Panyutin³, Dmitrii Badikov³, Valentin Petrov⁴; ¹Neel Inst., France; ²Univ. Grenoble Alpes, France; ³Kuban State Univ., Russia; ⁴Max-Born-Inst., Germany. We report the magnitude of the quadratic nonlinear coefficients of the monoclinic crystal BaGa₄Se₇ from the study of second-harmonic generation using a tunable fundamental beam in slabs kept fixed at normal incidence.

MT2C.2 • 10:45

Refined Sellmeier equations up to the near-infrared in the organic N-benzyl-2-methyl-4-nitroaniline (BNA) crystal, Benoit Boulanger², Cyril Bernerd¹, Jerome Debray^{2,1}, Takashi Takashi Notake³, Mio Koyama³, Hiroaki Minamide³, Hiromasa Ito³, Patricia Segonds^{2,1}; ¹Neel Inst., France; ²Univ. Grenoble Alpes, France; ³RIKEN, Japan. We directly measured phase-matching second-harmonic and sum-frequency generation conditions and refined the Sellmeier equations of BNA up to the near-infrared. We improved the calculated phase-matching curve for THz emission from difference-frequency generation.

MT2C.3 • 11:00

Large mode area low-loss orientation-patterned GaAs waveguides for frequency conversion to the midinfrared, Arnaud Grisard¹, Myriam Bailly¹, Eric Lallier¹, Bruno Gérard²; ¹Thales Research & Technology, France; ²III-V Lab, France. We designed and fabricated low loss orientation-patterned gallium arsenide waveguides suited to versatile frequency conversion from fiber lasers to the mid-wave and long-wave infrared.

MT2C.4 • 11:15

Femtosecond nonlinear interactions in the Langatate LGT: Characterization of a new middle infrared nonlinear crystal., Elodie Boursier^{1,2}, Giedre M. Archipovaite¹, Jean-Christophe M. Delagnes¹, Stéphane Petit¹, Guilmot Ernotte⁵, Philippe Lassonde⁵, Patricia Segonds^{2,4}, Benoit Boulanger^{2,4}, Yannick Petit¹, François Légaré⁵, Dmitry Roshchupkin³, Eric Cormier¹; ¹Univ Bordeaux, France; ²Institut Neel, France; ³Inst. of Microelectronics Tech., Russian Academy of Sciences, Russia; ⁴Université Grenoble Alpes, France; ⁵INRS, INF, ALLS, Canada. We measured broad tunable spectra between 1.4 and 4.7 µm in the nonlinear crystal La₃Ga₅₅Ta_{0.5}O₁₄ (LGT). They were generated in the femtosecond regime from phase-matched difference frequency generation and optical parametric

High-brightness Sources and Light-driven Interactions Congress 26 - 28 March 2018

Orangerie B

Orangerie A

HILAS

10:30 -- 12:30 HT2A • Relativistic Intensity generation and experiments -Continuing

HT2A.5 • 11:45

Self-Filtering and Small-Scale Self-Focusing Suppression of High-Intensity Laser Beams, Efim A.

Khazanov¹, Valdislav Ginzburg¹, Anton A. Kochetkov¹; ¹Inst. of Applied Physics, Russia. The experimental study based on direct and indirect measurements of spatial noise gain of intense radiation propagating in a glass plate confirms that free space run acts as a spatial filter and leads to small-scale self-focusing suppression.

HT2A.6 • 12:00

Wavefront Degradation of a 200 TW Laser from Heat-Induced Deformation of In-Vacuum Compressor

Gratings, Vincent Leroux^{1,2}, Spencer W. Jolly^{1,2}, Matthias Schnepp¹, Timo Eichner¹, Sören Jalas¹, Manuel Kirchen¹, Philipp Messner¹, Christian Werle¹, Paul Winkler¹, Andreas R. Maier¹; ¹Center for Free-Electron Laser Science and Dept. of Physics, Univ. of Hamburg, Germany; ²Institue of Physics of the ASCR, ELI-Beamlines project, Czechia. We report laser wavefront degradation of a 200 TW laser from heat absorbed by the in-vacuum compressor gratings. Systematically scanning laser energy and rep-rate, we define an average power limit for keeping an undisturbed wavefront.

HT2A.7 • 12:15

4PW laser beam interaction with near-critical density plasma and study of astrophysical phenomena in Lab, Bo Ram Lee¹; *1Inst. for Basic Science, South Korea.* High power laser beam of 4 PW is focused onto a nearcritical density plasma and the light-matter interaction as well as its physical mechanism is studied.

EUV & X-ray

10:30 -- 12:30 ET2B • Applications in Imaging - Continuing

ET2B.3 • 11:30

MetalJet Technology for High-End Diffraction and Imaging Techniques, Emil Espes¹, Björn A. Hansson¹, Julius Hållstedt¹, Daniel H. Larsson¹, Ulf Lundström¹, Mikael Otendal¹, Andrii Sofiienko¹, Björn Sundman¹, Tomi Tuohimaa¹, Per Takman¹; *'Excillum AB, Sweden*. X -ray analysis/metrology rely heavily on the x-ray source brightness for resolution/exposure-time. Traditional xray tubes are limited by when the e-beam powerdensity melts the anode. The MetalJet overcomes this limitation by using a liquid anode.

ET2B.4 • 11:45

Optimisation of Compact Laser Driven Accelerator X-ray Sources for Industrial Imaging Applications, Daniel Symes¹, Ceri Brenner¹, Dean Rusby¹, Chris Armstrong¹, Chris Thornton¹, Nicolas Bourgeois¹, Yiftach Katzir¹, Chris Gregory¹, David Neely¹, Rajeev Pattathil¹, Ric Allott¹, Jonathan Wood², Nelson Lopes^{2,3}, Jan-Niclas Gruse², Jason Cole², Stuart Mangles², Zulfikar Najmudin², Chris Murphy⁴, Chris Baird⁴, Chris Underwood⁴, Matthew Streeter⁵, Silvia Cipiccia⁶; ¹STFC Rutherford Appleton Lab, UK; ²John Adams Inst. for Accelerator Science, Imperial College London, UK; ³GoLP, IPFN, Instituto Superior Tecnico, Portugal; ⁴Univ. of York, UK; ⁵Lancaster Univ., UK; ⁶Diamond Light Source, UK. Compact laser-driven electron accelerators can produce coherent x-ray beams with high brightness, small source-size and femtosecond duration. We will discuss the suitability of these sources to address challenges in industrial imaging.

ET2B.5 • 12:00

Ptychographic Coherent Diffractive Imaging using High Photon Flux Table-top XUV Sources, Getnet K.

Tadesse^{2,1}, Wilhelm Eschen¹, Robert Klas^{2,1}, Maxim Tschernajew¹, Frederik Tuitje³, Christian Spielmann^{2,3}, Andreas Tünnermann^{1,4}, Jens Limpert^{1,2}, Jan Rothhardt^{2,1}; ¹Inst. of Applied Physics, Friedrich-Schiller-Univ. Jena, Germany; ²Helmholtz Inst. Jena, Germany; ³Inst. of Optics and Quantum Electronics, Friedrich-Schiller-Univ. Jena, Germany; ⁴Fraunhofer Inst. for Applied Optics and Precision Engineering, Germany. We present a table-top coherent imaging setup at 18 nm that achieves resolution close to one-wavelength in an extended field of view. A Siemens-star pattern is used as an ultimate resolution test on non-periodic

ET2B.6 • 12:15

Full-Field Functional Imaging of Acoustic Waves Using Tabletop High Harmonics, Robert M. Karl¹, Giulia Mancini¹, Dennis Gardner¹, Elisabeth Shanblatt¹, Joshua Knobloch¹, Travis Frazer¹, Jorge N. Hernandez-Charpak¹, Begoña Abad Mayor¹, Michael Tanksalvala¹, Christina Porter¹, Daniel Adams¹, Henry Kapteyn¹, Margaret Murnane¹; ¹Univ. of Colorado at Boulder JILA, USA. We report the first stroboscopic full-field EUV microscope using high harmonics. Specifically, we demonstrate nanoscale movies of acoustic wave propagation in nanostructures with ≈0.1nm axial resolution, 90nm lateral resolution, and 10fs time resolution.

MICS

10:30 -- 12:30 MT2C • Nonlinear Optical Materials and Structures for Mid-IR - Continuing

MT2C.5 • 11:30

Angular Quasi-Phase-Matching in a Sphere of PPRKTP,

Dazhi Lu¹, Alexandra Pena¹, Patricia Segonds², Jerome Debray¹, Andrius Zukauskas³, Fredrik Laurell³, Valdas Pasiskevicius³, Carlota Canalias³, Benoit Boulanger^{2,1}; ¹Neel Inst., France; ²Universe Grenoble Alpes, France; ³KTH, Sweden. We report the first measurements of angular quasi-phase-matching directions of second-harmonic generation performed in the periodically-poled Rb-doped KTiOPO₄ biaxial crystal cut as a sphere.

MT2C.6 • 11:45

Chalcogenide Based Active and Passive Devices for Mid-IR Applications, Brandon Shaw¹, Rafael Gattass¹, Jesse Frantz¹, Jason Myers¹, Christopher Spillmann¹, Jawad Naciri¹, Woohong Kim¹, Shyam Bayya¹, Dan Rhonehouse¹, Lynda Busse¹, Kevin Major¹, Ken Ewing¹, Dan Gibson¹, Vinh Nguyen¹, Robel Bekele², Jakub Kolacz³, Henry Gotjen¹, Rajesh Thapa², Fred Kung⁴, Jason Auxier¹, Jas Sanghera¹; ¹US Naval Research Lab, USA; ²Sotera Defense Solutions, USA; ³ASEE, USA; ⁴Univ. Research Foundation, USA. We report on progress in development of chalcogenide based fiber and waveguide active and passive devices for routing, switching, and modulation of mid-IR sources for mid-IR applications. Optical performance of the devices will be reported.

MT2C.7 • 12:00

Horizontal Gradient Freeze Growth of Barium Thioand Selleno-gallates for Mid-Infrared Frequency Conversion, Peter G. Schunemann¹, Kevin Zawilski¹; ¹BAE Systems Inc., USA. We report extremely favorable HGF growth of high-optical quality barium thiogallate (BaGa4S7) and barium sellenogallate (BaGa4Se7): two recently reported nonlinear optical crystals with notably wide band gaps, deep infrared transparency, and moderately high nonlinear coefficients.

MT2C.8 • 12:15

Coherent Supercontinuum Generation in a Silicon-Germanium Waveguide in the Mid Infrared, Milan Sinobad^{2,1}, Christelle Monat², Barry Luther-Davies³, Pan Ma³, Stephen Madden³, David J. Moss⁴, Arnan Mitchell¹, Regis Orobtchouk², Alberto Della Torre², Salim Boutami⁵, Jean-Michel Hartmann⁵, Jean-Marc Fedeli⁵, Christian Grillet²; ¹*RMIT Univ., France; ²Lyon Inst. of Nanotechnology, France; ³Australian National Univ., Australia; ⁴Swinburne Univ. of Tech, Australia;* ⁵*CEA-Leti, France.* We report high brightness coherent supercontinuum extending from 2.8 to 5.0µm in an air cladded Si0.6Ge0.4/Si waveguide with all-normal dispersion. Dispersion engineering and low propagation loss allowed us to achieve supercontinuum with 5mW on-chip power.

12:30-14:00 • Lunch on your own

Tuesday, 27 March

HILAS

14:00 -- 16:00 HT3A • Ultrafast and Parametric Amplifiers Presider: Gunter Steinmeyer; Max Born Inst., Germany

HT3A.1 • 14:00

Fuesday, 27 March

Scalable Concepts for THz Generation by Tilted-Pulse-Front Pumping, Jozsef A. Fulop^{1,3}, László Pálfalvi²,

Gyorgy Toth¹, Gyula Polónyi^{2,1}, Balázs Monoszlai³, Levente Tokodi², Gábor Almási², János Hebling^{2,1}; ¹MTA TKI, Hungary; ²Univ. of Pécs, Hungary; ³ELI-ALPS, Hungary. A monolithic contact-grating semiconductor source and a hybrid LiNbO3 stair-step echelon are presented for efficient THz pulse generation by optical rectification. They enable excellent focusability of the THz beams and are scalable to mJ-level THz pulse energies.

HT3A.2 • 14:15

Wavelength-Independent Coherence Cleaning by Parametric Plasma Amplification, Matthew Edwards1,

Kenan Qu¹, Julia Mikhailova¹, Nathaniel Fisch¹; ¹Princeton Univ., USA. Although incoherence generally suppresses stimulated scattering processes in plasma, we show that this requirement relaxes for parametric amplification in the pump-depletion regime, including for x rays, providing a compact wavelengthindependent source of high-peak-power radiation.

HT3A.3 • 14:30

High Conversion Efficiency Optical Parametric Amplifiers for SG-II 5PW Laser System, Xinglong Xie¹, Jiangiang Zhu¹, Meizhi Sun¹, Jun Kang¹, Haidong Zhu¹, Qingwei Yang¹, Ailin Guo¹, Ping Zhu¹, Qi Gao¹, Xiao

Liang¹, Shunhua Yang¹; ¹SIOM, China, China. By optimization, the first two OPCPA amplifiers of SGII 5PW laser have reached the conversion efficiency of 42.8% and 41.9% respectively. These are the highest values among the ever reported OPCPA laser systems.

HT3A.4 • 14:45

Tailored Light for Laser Material Processing: Example

Applications, Olivier J. Allegre¹; ¹Univ. of Manchester, UK. This paper presents methods to produce tailored light fields in the focal region of ultrashort-pulse lasers. As a proof of concept, various vector field landscapes are generated such as radial polarization, vortices, Bessel or tailored Fresnel beams and used for laser material processing.

14:00 -- 15:45 ET3B • EUV Lithography and Semiconductor Manufacturing 1 Presider: Donald Smith; Energetiq, USA

ET3B.1 • 14:00 Laser Produced Plasma EUV Sources for Lithography: Technology, Performance and Prospects, Igor

Fomenkov1; ¹ASML US LP, USA. Laser produced plasma extreme-ultraviolet sources at 250 W power, integrated with ASML's NXE:3400B scanners enable high volume manufacturing EUV Lithography. We'll provide an overview of key technologies and performance data of the sources, and describe prospects of power scaling towards 500W.

Invited ET3B.2 • 14:30

Challenges to realize EUV-FEL high power light source exceeding 10 kW by ERL accelerator technology, Hiroshi Kawata¹, Eiji Kako¹, Kensei Umemori¹, Hiroshi Sakai¹, Norio Nakamura¹, Ryukou Kato¹, Tsukasa Miyajima1; 1 High Energy Accelerator Research Org., Japan. A high power EUV-FEL light source based on an Energy Recoveryl Linac (ERL) is one of the most promisinglight sources for future lithography. Several feasibility studies and challenges will be presented.

MICS

14:00 -- 16:00 MT3C • Spectroscopy, Microscopy and Biophotonics Presider: Irina Sorokina; Norges Teknisk

Naturvitenskapelige Univ., Norway

MT3C.1 • 14:00

Detection of isotopic ¹²CH₄ and ¹³CH₄ using cavity ring -down spectroscopy coupled with an external-cavity quantum cascade laser, Mithun Pal¹, Abhijit Maity¹, Sanchi Maithani¹, Manik Pradhan¹; ¹CBMS, S N Bose National Centre for Basic Sciences, India. We developed a mid-infrared continuous-wave cavity ringdown spectroscopy technique coupled with an external-cavity mode-hop-free quantum cascade laser working at 7.5 µm. We, subsequently, tested the system by measuring ¹²CH₄ and ¹³CH₄ isotopes of methane (CH₄).

MT3C.2 • 14:15

Application of Quantum Cascade Laser Absorption Spectroscopy for Correlation Studies in Plasma Etching Processes in the Semiconductor Industry, Norbert Lang¹, Sven Zimmermann², Henrik Zimmermann¹, Uwe Macherius¹, Benjamin Uhlig³, Matthias Schaller⁴, Stefan S. Schulz⁵, Jürgen Röpcke¹, Jean-Pierre H. van Helden1; 1 Leibniz Inst. for Plasma Science and Tech., Germany; ²Chemnitz Univ. of Tech., Germany; ³Center Nanoelectronics Tech., Fraunhofer IPMS, Germany; ⁴Globalfoundries Dresden Module Two, Germany; ⁵Fraunhofer Inst. for Electronic Nano Systems, Germany. Applying quantum cascade laser absorption spectroscopy a correlation could be demonstrated between the concentration of the etching products SiF_4 and CO and the etching rate of porous SiCOH in a low-pressure rf plasma containing CF₄.

MT3C.3 • 14:30

Human Breath Acetone Analysis by Mid-IR Laser Spectroscopy: Development and Application, Bela Tuzson¹, Herbert Looser², Ferdinand Felder³, Fabian Bovey⁴, Luc Tappy⁴, Lukas Emmenegger¹; ¹Empa, Switzerland; ²FHNW, Switzerland; ³Camlin Technologies Ltd., Switzerland; ⁴Université de Lausanne, Switzerland. A broadly tunable mid-IR VECSEL based spectrometer is developed and used in a pilot clinical study to investigate the correlation between exhaled acetone concentration and negative energy balance induced by lifestyle interventions.

MT3C.4 • 14:45

Intracavity Gas Detection with an extended-cavity Quantum Cascade Laser emitting @ 7.6 µm, Laurent Bizet¹, Raphael Vallon¹, Bertrand Parvitte¹, Gregory Maisons², Mathieu Carras², Virginie Zeninari¹; ¹GSMA, France; ²MirSense, France. We report the development of an extended-cavity quantum cascade laser emitting in the mid-infrared region and its use to the detectorless intracavity detection of atmospheric molecules such as methane and water vapor.

HILAS

14:00 -- 16:00 HT3A • Ultrafast and Parametric Amplifiers -Continuing

HT3A.5 • 15:00

Frequency resolved measurement of population inversion induced refractive index changes in

Ti:Sapphire, Roland Nagymihály¹, Huabao Cao¹, Peter Jojart¹, Viktor Zuba², Mikhail Kalashnikov^{1,3}, Adam Borzsonyi¹, Vladimir Chvykov¹, Karoly Osvay¹; ¹*ELI-HU Non-Profit Ltd., Hungary; ²Dept. of Optics and Quantum Electronics, Univ. of Szeged, Hungary; ³Max Born Inst. for Nonlinear Optics and Short Pulse Spectroscopy, Germany.* Inversion induced refractive index changes have been experimentally investigated for broad spectral range along the two axes of Ti:Sapphire. Results are crucial for understanding and management of CEP stabilization and compression of few cycle pulses.

HT3A.6 • 15:15

Few-tens-mJ, few-cycle mid-infrared pulses from MgO:LiNbO3 dual-chirped optical parametric

amplification, Yuxi Fu¹, Bing Xue¹, Kotaro Nishimura^{1,2}, Akira Suda², Katsumi Midorikawa¹, Eiji J. Takahashi¹; ¹*RIKEN Center for Advanced Photonics, RIKEN, Japan;* ²*Tokyo Univ. of Science, Japan.* We demonstrate 3.3 μm mid-infrared pulses operating at 10 Hz with 29 mJ and 73 fs pulse duration using a dual-chirped optical parametric amplification (DC-OPA) scheme. We will further increase the pump pulse energy for DC-OPA to obtain a TW-class mid-infrared laser pulse.

HT3A.7 • 15:30

Strong Field Laser Induced Surface Structuring in Mid-IR Wavelengths, Enam Chowdhury¹, Noah Talisa¹, Kevin Werner¹, Shler Irani¹, Drake Austin¹; ¹Physics, The Ohio State Univ., USA. Strong field mid-IR laser (I = 2 - 4.2µm, Dt = 100-200 fs) surface interactions were studied in Si, Ge, ZnSe, InSb. Periodic surface structures and features with sizes down to < I/40 were observed.

HT3A.8 • 15:45

260-mJ Ho:YLF pump for a 7-µm OPCPA, Ugaitz E. Etxano¹, Tsuneto Kanai¹, Daniel Sánchez¹, Kevin Zawilski², Peter G. Schunemann², Olivier Chalus³, Guillaume Matras³, Christophe Simon-Boisson³, Jens Biegert¹; ¹Instutut de Ciencies Fotoniques. ICFO, Spain; ²BAE Systems, USA; ³THALES Optronique, France. We report on the generation of 260-mJ pulses at 2 µm wavelength from a Ho:YLF MOPA system for pumping a millijoule-class 7-µm OPCPA.

EUV & X-ray

Physics of Laser-Produced Plasma Sources of Extreme

Kurilovich^{1,2}, Francesco Torretti^{1,2}, Ruben Schupp^{1,2}, Joris

Netherlands; ²Physics and Astronomy, Vrije Universiteit

Amsterdam, Netherlands; ³Zernike Inst. for Advanced

Ultraviolet Radiation, Oscar Versolato¹, Dmitry

Ronnie Hoekstra^{1,3}, Wim Ubachs^{1,2}; ¹ARCNL,

Scheers^{1,2}, Mart Johan Deuzeman^{1,3}, Alex Bayerle¹,

Materials, Univ. of Groningen, Netherlands. Laser-

extensive diagnostic toolset to characterize and

produced tin plasmas are used for the generation of

extreme ultraviolet light for nanolithography. We use an

understand the physics of these plasma light sources at

A Compact High-Brightness Accelerator-based EUV

Source for Actinic Mask Inspection, Terence Garvey¹,

Yasin Ekinci¹, Leonid Rivkin¹, Andreas Streun¹, Albin

The design of a compact electron storage ring for the

metrology applications in the semiconductor industry.

presented. Such a source has potentially important

Wrulich1; 1Paul Scherrer Inst., Switzerland.

production of high-brightness EUV radiation is

Orangerie B

14:00 -- 15:45 ET3B • EUV Lithography and Semiconductor Manufacturing 1 - Continuing

ET3B.3 • 15:00 Withdrawn

ET3B.4 • 15:15

the atomic level.

ET3B.5 • 15:30

Orangerie A

MICS

14:00 -- 16:00 MT3C • Spectroscopy, Microscopy and Biophotonics -Continuing

MT3C.5 • 15:00

Recent Advances in Macro ATR-FTIR Microspectroscopic Technique for High Resolution Surface Characterisation at Australian Synchrotron IR Beamline, Jitraporn Vongsvivut¹, Vi Khanh Truong², Nishar Hameed², David A. Beattie³, Marta Krasowska³, Sally Gras⁴, Gregory S. Watson⁵, Jolanta A. Watson⁵, David Perez-Guaita⁶, Philip Heraud⁶, Bayden R. Wood⁶, Junko Morikawa⁷, Saulius Juodkazis², Elena P. Ivanova², Mark J. Tobin¹; ¹Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron, Australia; Swinburne Univ. of Tech., Australia; ³Univ. of South Australia, Australia; ⁴ARC Dairy Innovation Hub, Univ. of Melbourne, Australia; ⁵Univ. of the Sunshine Coast, Australia; ⁶Centre for Biospectroscopy, Monash Univ., Australia; Tokyo Inst. of Tech., Japan. This work presents advances in surface characterisation achieved using in-house developed synchrotron macro ATR-FTIR microspectroscopic devices at Australian Synchrotron. Successful applications include single fibres, surface coatings, food and biomedical sciences as well as zoology and entomology.

MT3C.6 • 15:15

Enhanced off-axis integrated cavity output spectroscopy using optical reinjection in the mid-IR wavelength region, Faisal Nadeem¹, Julien mandon¹, Simona Cristescu¹, Frans Harren¹; *TRadboud Univ.*, *Netherlands*. A novel approach to enhance the signalto-noise ratio in off-axis integrated cavity output spectroscopy, centered around 8µm is demonstrated. This work exhibits cavity-enhanced spectroscopy using a compact size, with absorption sensitivity comparable to longer absorption cells.

MT3C.7 • 15:30

Label-free, Chemically Selective Mid-Infrared (MIR) Microscopy for Targeted Therapy, Rabah Mouras³, Aladin Mani³, Enrico Bagnoli¹, Tewfik Soulimane², Christophe Silien³, Syed A. Tofail³; ¹CURAM, Univresity of Galway, Ireland; ²Chemical sciences, Bernal Inst., Univ. of Limerick, Ireland; ³Dept. of Physics, Bernal Inst., Univ. of Limerick, Ireland. A bench-top confocal microscope employing a fast mid-infrared laser has been developed and used to monitor in a label-free manner the uptake of biologically-compatible drug polyelectrolyte capsules containing anticancer drug by MCF-7 breast cancer cells.

MT3C.8 • 15:45

Advances in Mid-Infrared Spectroscopic Imaging for Analysis of Breast Cancer Associated

Microcalcifications, Pascaline Bouzy¹, Yu-Pei Tseng², Christian Pedersen², Peter Tidemand-Lichtenberg², Palombo Francesca¹, Nick Stone¹; ¹Univ. of Exeter, UK; ²Fotonik, DTU, Technical Univ. of Denmark, Denmark. Microcalcifications are an important hallmark of breast cancer and their composition correlates with the degree of pathology. This study used mid-infrared spectroscopic imaging to assess the chemical composition of breast microcalcifications to aid disease diagnosis. Tuesday, 27 March

uesday, 27 March

16:15 -- 17:15 JT4A • Postdeadline Papers

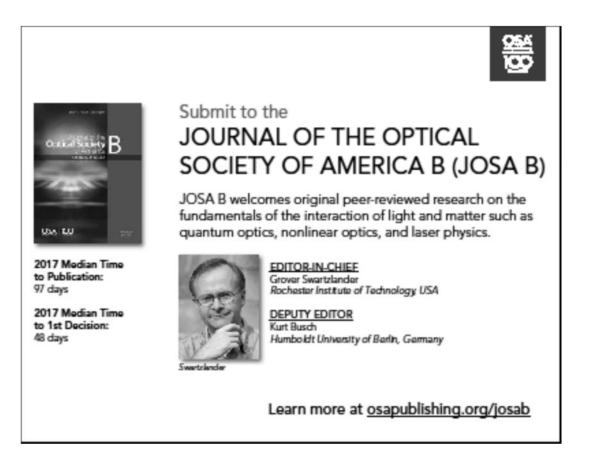
JT4A.1 • 16:15

Pulse Duration Artifact in Linear Autocorrelation Measurements of Partially Coherent XUV Sources, Annie Klisnick^{1,2}, Andréa Le Marec^{1,2}, Olivier Larroche³; ¹/SMO, CNRS, France; ²Université Paris-Sud, Université Paris-Saclay, France; ³DAM/DIF, CEA, France. We present a quantitative analysis and interpretation of the presence of shoulder features at delays larger than the coherence time in the linear autocorrelation traces of partially coherent, ultrashort pulse laser sources.

JT4A.2 • 16:27

Cavitation-induced expansion dynamics of tin microdroplet target in EUV light sources, Dmitry Kurilovich^{1,2}, Tiago Pinto^{1,2}, Ruben Schupp¹, Francesco Torretti^{1,2}, Joris Scheers^{1,2}, Aneta Stodolna^{1,2}, Kjeld S. Eikema^{1,2}, Stefan Witte^{1,2}, Wim Ubachs^{1,2}, Ronnie Hoekstra^{1,3}, Oscar Versolato¹; ¹ARCNL, Netherlands; ²Department of Physics and Astronomy, VU Amsterdam, Netherlands; ³Zernike Institute for Advanced Materials, University of Groningen, Netherlands. Laser-induced cavitation in tin microdroplets can be used to obtain optimized laser targets in EUV sources for nanolithography. We present our experimental analysis of microdroplet expansion and find good agreement with a fluid dynamics model.

JT4A.3 • 16:39


THz Pulse Generation by Relativistic Plasmas, Jeremy Dechard¹, Arnaud Debayle¹, Xavier Davoine¹, Laurent Gremillet¹, Luc Bergé¹; ¹CEA-DAM, DIF, France. Terahertz generation by underdense relativistic plasmas created by two-color laser pulses are investigated. PIC simulations shows that transverse photocurrents is dominated by coherent transition radiation. The later is due to wakefield-accelerated electrons and provides mJ level THz energies.

JT4A.4 • 16:51

High Harmonic Generation in 2D and 3D semiconductors, Hamed Merdji¹; ¹Commissariat a l'Energie Atomique, France. We show the amplification of non-perturbative harmonics by local field enhancement in 3D semiconductors. Then, we investigate high harmonic generation in free standing 2D graphene. Finally, we propose routes for spatio-temporal coupling using 3D nanostructured semiconductors.

JT4A.5 • 17:03

GHz Heterodyne generation using Two DFB Mid-IR QCL lasers on a 9μm QWIP, Djamal Gacemi¹, azzurra Bigioli¹, Allegra Calabrese¹, Daniele Palaferri¹, Yanko todorov¹, Angela Vasanelli¹, Jérôme Faist², Carlo Sirtori¹; ¹Laboratoire MPQ and CNRS, France; ²ETH zurich, Switzerland. We report the implementation of a heterodyne measurement setup using two DFB Mid-IR QC lasers on a 9μm Quantum Well Infrared Photodetector. High sensitivity and high speed 9μm QWIP are shown, thanks to heterodyne technique.

17:30-19:00 JT5A • Poster Session

JT5A.1

A Source to Deliver Mesoscopic Particles for Laser

Plasma Studies, Ram Gopal¹, Rakesh K. Yembadi², krishna M. M¹; ¹Dept. of nuclear and atomic sciences, Tata Inst. of Fundamental research, India; ²Dept. of physics, Indian Inst. of technology, India. The idea of suspending mesoscopic particles of desired size/shape in vacuum for laser plasma acceleration is a sparsely explored domain. In the following report we outline the development of a delivery mechanism of microparticles into an effusive jet in vacuum

JT5A.2

HHG Beamline, a Unique Turnkey System Delivering a

Brilliant XUV Beam, Fabio Giambruno¹, Stephane Reyne¹, Alexandre Pacholski¹, Jaroslav Nejdl², Adam Wolf², Victoria Nefedova², Mathias Le Pennec¹; ¹ARDOP, France; ²ELI-Beamlines, Czechia. A High Harmonic Generation Beamline has been designed, delivered, installed and commissioned by ARDOP at ELI Beamlines pillar in Czech Republic, as a turn-key system generating a broadband XUV beam from 5nm to 120nm.

JT5A.3

Generation of single-cycle attosecond pulses based on Thomson scattering of terahertz pulses, Gyorgy Toth^{1,2}, Zoltan Tibai², Ashutos Sharma³, Jozsef A. Fulop¹, János Hebling²; ¹MTA-PTE High-Field THz Research Group, Hungary; ²Univ. of Pécs, Hungary; ³ELI-ALPS, ELI-Hu Nkft., Hungary. According to calculations, single-cycle attosecond pulses can be generate with few nJ energy by Thomson scattering of terahertz pulse on ultrathin electron layer, produced by a laser-plasma wakefield accelerator and some suitable magnetic devices.

JT5A.4

The LUNEX5 Project, Marie-Emmanuelle Couprie¹; ⁷Synchrotron SOLEIL, France. LUNEX5 aims at generating short, intense, coherent 40-4 nm Free Electron Laser with a high repetition rate superconducting Linear Accelerator, advanced multi-FEL lines with pilot user applications, and a Laser Plasma Accelerator for its qualification.

JT5A.5

Enhancement of Laser-Compton X-ray by Crab

Crossing, Yuya Koshiba¹, Shogo Ota¹, Ryosuke Morita¹, Kazuyuki Sakaue², Masakazu Washio¹, Takeshi Higashiguchi³, Junji Urakawa⁴; ¹Waseda Univ., Research Inst. for Science and Engineering, Japan; ²Waseda Univ., Waseda Inst. for Advanced Study, Japan; ³Utsunomiya Univ., Japan; ⁴High Energy Accelerator Research Organization, Japan. Crab crossing of electron beam and laser pulse enables head-on collision in laser-Compton scattering. We will report prospects of crab crossing laser-Compton scattering and a suitable laser system based on a thin-disk regenerative amplifier.

JT5A.6

Numerical study of laser-produced plasma extreme ultraviolet light emission using dual-pulse scheme, Po-Yen Lai¹, Shih-Hung Chen¹, Chia-Ying Hsieh¹; ¹Physics, National Central Univ., Taiwan. We numerically demonstrated effects of pre-pulse properties on extreme ultraviolet emission from laser-produced Sn plasmas using a dual-pulse scheme, which increases the EUV conversion efficiency from 3.6% with the singlepulse scheme to 5.9%.

JT5A.7

Tunable high harmonics from nanorings swirled by

intense optical vortices, Jamal Berakdar¹; ⁷Martin Luther Univ Halle Wittenberg, Germany. Irradiating intercalated ring by optical vortices generates a circulating current that emits high harmonic bursts with well-defined polarization charactisitics and with frequencies and time structures controllable by the driving optical vortex winding number.

JT5A.8

MIR Generation from 3D $c^{\mbox{(2)}}$ Nonlinear Photonic

Crystals, KaiHsun Chang¹, Jhih-Yong Han¹, Azzedine Boudrioua², L.-H. PENG¹; ¹Graduate Inst. of Photonics and Optoelectronics and Dept. of Electrical Engineering, National Taiwan Univ., Taiwan; ²LPL, Institut Galilée , Université Paris 13, France. We propose dual signal/idler wavelength generation using bi-layered PPLT-OPO crystal with refractive index modulation along the depth direction. It can serve as pump to facilitate THz surface emission when monolithically integrated with a QPM-DFG section.

JT5A.9

Tunability of Low-doped Tm:CaF2 Crystal at Cryogenic

Temperatures, Jan Sulc¹, Michal Nemec¹, Richard Svejkar¹, Helena Jelínková¹, Maxim E. Doroshenko², Vasilii A. Konyushkin², Andrey N. Nakladov², Vyacheslav V. Osiko²; *'Czech Technical Univ. in Prague, Czechia; 'Laser Materials and Technology Research Center, AM Prokhorov General Physics Inst. of RAS, Russia.* The temperature influence on diode-pumped Tm(0.4 mol%):CaF₂ laser performance and tunability was investigated down to cryogenic temperatures. Laser efficiency up to 21 % and wide, red-shifted, tuning range (1783-1915 nm) was demonstrated at 80 K.

JT5A.10

The growth and properties of a novel mid-IR laser

crystal: Yb³⁺/**E**r³⁺/**P**r³⁺:**LiNbO**₃, Peixiong Zhang¹; 'SIOM, China. The use of Pr³⁺ codoping for enhancement of the 2.7 μm emissions was investigated in the Er/Yb codoped LiNbO₃ crystal for the first time. The 2.7 μm emission characteristics and energy transfer were also investigated.

JT5A.11

Design of Highly Coherence MIR Supercontinuum Generation in W-type Index Chalcogenide Fiber,

Mustafa A. Khamis^{1,2}, Ruben Sevilla¹, Karin Ennser¹; ¹Swansea Univ., UK; ²Baquba Technical Inst., Middle Technical Univ., Iraq. This paper proposes the W-type index chalcogenide fiber to generate fully coherent MIR supercontinuum generation. Our fiber design has high nonlinear coefficient, flattened dispersion profile and a tight confinement of the mode within the core

JT5A.12

Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF₂ in waveguide configuration, Saiyu Luo², Rémi Soulard¹, Richard Moncorge¹, Christophe Labbe¹, Jean-Louis Doualan¹, Zhiping Cai², Huying Xu²; ¹Universite de Caen, France; ²Xiamen Univ., China. Based on a detailed spectroscopic investigation including excited-state absorption and fluorescence measurements, a simulation is developed to demonstrate multiwatt CW laser operation of an Er:CaF₂ crystalline waveguide using single- or dual-wavelength pumping.

JT5A.13

Applications of IR Laser Spectrometry to the Monitoring of Gaseous $\rm CO_2$ in the Headspace of Champagne

Glasses, Raphael Vallon¹, Anne-Laure Moriaux¹, Bertrand Parvitte¹, Clara Cilindre¹, Gérard Liger-Belair¹, Virginie Zeninari¹; ⁷*GSMA*, *France*. We report the development, the validation and the application of an infrared laser spectrometer devoted to the measurement of gaseous carbon dioxide in the headspace of Champagne and sparkling wines glasses.

JT5A.14

Tunable Diode-pumped Er:SrF2 Laser at 2.7 μm, Richard Svejkar¹, Jan Šulc¹, Helena Jelínková¹, Václav Kubeček¹, Weiwei Ma², Dapeng Jiang², Qinghui Wu², Liangbi Su²; ¹*Czech Technical Univ. in Prague, Faculty of Nuclear Sciences and Physical Engineering, Czechia;* ²*Key Lab of Transparent and Opto-functional Inorganic Materials, Shanghai Inst. of Ceramics, Chinese Academy of Sciences, China.* Mid-infrared 2.73 μm radiation was obtained with diode-pumped Er:SrF2 at roomtemperature. Output power amplitude was 1.3W with slope efficiency 9.2% and new maximal tuning range 123 nm (2690 nm - 2813 nm) was reached.

JT5A.15

Long Wavelength External Cavity Quantum Cascade Laser for Spectroscopic Application, Sylvain

Mathonnière¹, Ján Tomko¹, Yohei MATSUOKA¹, Sven Peters², Jan Kischkat¹, Mykhaylo P. Semtsiv¹, Ted W. Masselink¹; ¹Physics, Humboldt Univ. of Berlin, Germany; ²SENTECH, Germany. We present a long wavelength external cavity quantum cascade laser. The fabrication of the external cavity laser is described including anti-reflection coating design, simulations, and results. Spectroscopic feasibility is proven by measurement of ammonia absorption.

Strasbourg Convention Center

17:30-19:00

JT5A • Poster Session

JT5A.16

2-μm Soliton Molecule Sources in a Monolayer MoS₂ Mode-Locked Fiber Laser, Changxi Yang¹; [†]*Tsinghua Univ., China.* We report on the generation of stable soliton molecules composed of two, three, and four solitons at 2-μm in a monolayer MoS₂ mode-locked fiber laser.

JT5A.17

Stable, High-Average-Power, Degenerate Optical

Parametric Oscillator at 2.1 μm, Hanyu Ye¹, Biplob Nandy¹, Chaitanya Kumar Suddapalli², Majid Ebrahim-Zadeh^{1,3}; ¹*ICFO-Institut de Ciencies Fotoniques, Spain;* ²*Radiantis, Spain;* ³*Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain.* We describe a degenerate 1.064-μm-pumped pulsed optical parametric oscillator based on MgO:PPLN in compact Littrow-grating cavity configuration, providing 2.7W of average power at 2.1μm with high spectral and power stability in good spatial beam quality.

JT5A.18

Optical Properties of Highly Excited Monolayer MoS2 by Few-cycle Femtosecond Laser Pulse Irradiation, Xiaoxing Su¹, Lan Jiang¹; ¹*Beijing Inst. of Technology*,

China. The dielectric responses of monolayer MoS₂ to few-cycle femtosecond laser pulse with vary parameters are demonstrated by using time-dependent density functional theory. Dielectric properties of the material are modulated on the femtosecond time scale.

JT5A.19

Test and Development of an OPO-Based Spectrometer for SAFESIDE – An INTERREG V Project for Gases

Detection, Florent Defossez^{1,2}, Raphael Vallon¹, Bertrand Parvitte¹, Sylvain Brohez², Sébastien Guillemet³, Yves Hernandez³, Virginie Zeninari¹; ¹GSMA, France; ²Université de Mons, Belgium; ³MULTITEL, Belgium. In the framework of the INTERREG V research program SAFESIDE, we report the test and development of a mid-infrared laser source for fume and gases detection by infrared laser spectroscopy.

JT5A.20

Cascaded Extraction OPCPA – A Highly Efficient Power Amplifier Design, Szabolcs Tóth¹, Huabao Cao¹,

Mikhail Kalashnikov¹, vladimir chvykov¹, Karoly Osvay¹; ⁷*LL*-*ALPS*, *ELI-HU Nonprift Ltd., Hungary*. The effectiveness of the proposed design is demonstrated by a 4D numerical simulation and compared to conventional OPCPA. According to the results 10% higher conversion efficiency and increased energy stability is predicted in CE-OPA.

JT5A.21

Laser-induced forward transfer of aluminium particles in

different gaseous environment, Mohammad Hossein Azhdast¹, Hans Joachim Eichler¹, Klaus-Dieter Lang², Veronika Glaw², Martin Kossatz³; ¹Technical Univ. of Berlin, Germany; ²IZM Fraunhofer, Germany; ³PacTech GMBH, Germany. Laser-induced forward transfer is a novel technique used for Aluminium implementing on wafer substrates in different gaseous environments: vacuum, room atmosphere, Argon and Arcal (F5). The laser pulse energy is optimized during the process.

JT5A.22

Novel Method of Measuring Longitudinal Temperature Distribution in End-Pumped Laser Medium, Andrei

Korolkov^{1,2}, Dmitrii Belogolovskii¹, Alexey Konyashkin^{1,2}, Oleg Ryabushkin^{1,2}; *'Moscow Inst. of Physics and Technology, Russia; ²Kotelnikov Inst. of Radioengineering and Electronics of RAS, Russia.* Laser gain medium temperature distribution is crucial for laser operation. Here we demonstrate a novel method of measuring longitudinal temperature distribution in endpumped laser medium avoiding additional heating of temperature sensors by scattered radiation.

JT5A.23

Laser-Generated Particles for Advanced Material

Science, Patrizio Antici¹, Marianna Barberio¹, Massimiliano Sciscio¹, Simona Veltri¹; ¹/NRS-EMT, *Canada.* The advent of high-power ultra-short lasers has opened up the field of laser-driven particle acceleration, with numerous applications in different fields. I will present different applications using lasergenerated particles in Material Science.

JT5A.24

Space-born high brightness solid state phase-conjugate

lasers, Anastasiya Pogoda^{1,2}, Stanislav Ivakin^{1,2}, Anatoly Boreysho^{1,2}; ¹*Ustinov Baltic State Technical Univ.*, *Russia*; ²*Laser systems LLC, Russia.* The article presents an overview of several steps in the development of high -brightness lasers for space applications: from pulsed solid-state phase conjugate laser with different multiloop cavity configurations to coherent combining of such lasers.

JT5A.25

Piezoelectric Resonance Laser Calorimetry for

Determination of Low Optical Absorption Coefficients of Polyhedron Crystal Boules, Georgii A. Aloian¹, Nikita V. Kovalenko¹, Irina V. Shebarshina¹, Alexey Konyashkin^{1,2}, Oleg Ryabushkin^{1,2}; 'Moscow Inst. of Physics and Technolo, Russia, ²Kotelnikov Inst. of Radioengineering and Electronics of RAS, Russia. Novel technique for measuring low optical absorption coefficients of massive crystal boules of arbitrary shape is proposed. Theoretical model that describes processes of heat transfer from the boule to surrounding air was developed.

JT5A.26

Q-switched Er-doped all-fiber laser based on

W0.5M00.5S2 saturable absorber, Chenxi Dou¹, Junli Wang¹, lei chen¹, haiting yan², lingjie meng², Zhiyi Wei³; ¹Xidian Univ., China; ²xi'an Jiaotong Univ., China; ³Inst. of physics, China. A Q-switched Er-doped all fiber laser based on a novel saturable absorber W0.5M00.5S2 is demonstrated. We obtain an output of the pulse energy of 256.5 nJ and 1.9 μs of pulse width at 1560nm central wavelength.

JT5A.27

Surface Temperature Distribution of Optical Materials Heated by Laser Irradiation, Nikita V. Kovalenko¹, Georgii A. Aloian¹, Irina Shebarsina¹, Alexey Konyashkin^{1,2}, Oleg Ryabushkin^{1,2}; ¹Moscow Inst. of Physics and Technology, Russia; ²Kotelnikov Inst. of Radio-engineering and Electronics of RAS, Russia. Equivalent temperature of the silica lens surface was measured at several points during laser irradiation using temperature detectors made of small transparent piezoelectric crystals. Theoretical model for the lens temperature distribution measurement is considered.

JT5A.28 Withdrawn

JT5A.29

Dual-chirped optical parametric amplifier for pumping multicycle tunable terahertz pulse source, Gyorgy Toth^{1,2}, Jozsef A. Fulop¹, János Hebling², ¹MTA-PTE High-Field THz Research Group, Hungary; ²Univ. of Pécs, Hungary, DC-OPA is proposed for generation of periodically intensity-modulated-pulses by interference of the signal and the idler. These pulses allows to tunable THz-pulse generation by the chirp and the delay between the pump and the signal.

07:00—18:30 • Registration, Bartholdi C

Orangerie B

EUV & X-ray

EW1B • EUV Lithography and Semiconductor

Invited

Ready for Prime Time?, Carsten Hartig1; 'Global

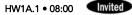
Foundries, USA. Abstract not provided

X-ray metrology for semiconductor manufacturing:

Presider: Igor Fomenkov; ASML. San Diego, USA

08:00 -- 9:30

Manufacturing II


EW1B.1 • 08:00

Orangerie C

HILAS

08:00 -- 10:00

HW1A • Theoretical Advanced in High-Field Physics Presider: Hartmut Ruhl; LMU, Germany

Ab Initio Description of High-harmonic Generation in Solids, Nicolas Tancogne-Dejean¹; ¹Theory, Max-Planck Inst. for Structure and Dynamics of Matter, Germany. Recently the possibility to generate high-order harmonics in solids has attracted a lot of attention. In this talk, we show that ab initio calculations help unraveling the microscopic mechanisms responsible for HHG in solids.

HW1A.2 • 08:30

Many-body effects upon high-harmonic generation in solid-state materials, Takuya Ikemachi¹, Yasushi Shinohara¹, Takeshi Sato¹, Junji Yumoto¹, Makoto Kuwata-Gonokami¹, Kenichi L. Ishikawa¹; ¹Univ. of Tokyo, Japan. Based on the time-dependent Hartree-Fock simulations, we reveal the electron-hole interaction qualitatively affects the solid-state highharmonic spectra. We identify its origin in terms of electron-hole polarization.

HW1A.3 • 08:45

Intraband and interband decomposition of high-orderharmonic spectra from bulk GaSe by an ab-initio

simulation, Yasushi Shinohara¹, Keisuke Kaneshima², Kengo Takeuchi², Nobuhisa Ishii², Kotaro Imasaka³, Tomohiro Kaji³, Satoshi Ashihara³, Jiro Itatani², Kenichi L. Ishikawa¹; ¹School of Engineering, Univ. of Tokyo, Japan; ²Inst. for Solid State Physics, Univ. of Tokyo, Japan; ³Inst. of Industrial Science, Univ. of Tokyo, Japan. We have developed an ab-initio simulation for high-orderharmonic generation from bulk GaSe. The simulation shows even-order harmonics are exclusively generated from the interband current while odd-order ones are dominated by intraband current below the band-gap.

HW1A.4 • 09:00

Ab Initio Simulations of Photoelectron Energy Spectra Emitted from Multielectron Systems, Yuki Orimo¹, Takeshi Sato¹, Kenichi L. Ishikawa¹; ¹Univ. of Tokyo, Japan. We report accurate ab initio simulations of photoelectron energy spectra from multielectron systems subject to an intense and ultrashort laser pulse with significantly reduced computational costs.

EW1B.3 • 09:00

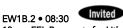
Actinic Mask Inspection System Using HHG EUV Source, Hiroo Kinoshita¹; ¹Univ. of Hyogo, Japan. A coherent scatterometry microscope (CSM) has been developed, in which high-order harmonic generation (HHG) is employed to produce coherent 13.5 nm light. The HHG -CSM is used to inspect absorber pattern defects and phase defects.

MW1C.3 • 08:30

High-peak-power, picosecond, mid-infrared optical parametric generator and amplifier pumped by

Tm:fiber laser, Lin Xu¹, Qiang Fu¹, Sijing Liang¹, David Shepherd¹, David Richardson¹, Shaif-ul Alam¹; ¹Univ. of Southampton, UK. A Tm:fiber laser pumped OP:GaAs optical parametric generator generates mid-infrared (2550-8300 nm) pulses with 3 kW of peak power. With a seed injection, a maximum peak power up to 13.3 kW is obtained from the optical parametric amplifier.

MW1C.4 • 08:45


A Femtosecond 8.5 µm Source Based on Intrapulse Difference-Frequency Generation of 2.1 µm Pulses,

Ondrej Novak¹, Peter Krogen^{2,3}, Tobias Kroh^{2,3}, Tomas Mocek¹, Franz X. Kaertner^{2,3}, Kyung-Han Hong²; ¹HiLASE Centre, Inst. of Physics of the Czech Academy of Sciences, Czechia; 2 Research Lab of Electronics, MIT (MIT), USA: ³Center for Free-Electron Laser Science and Deutsches Elektronen-Synchrotron (DESY), Germany. We generate ~8.5 μm , ~2 μJ femtosecond pulses via intrapulse DFG of 26 fs, 2.1 µm pulses in a type-II AgGaSe2 crystal with ~1% efficiency. Intrinsically CEPstable pulses cover the wavelengths of ~7-11 $\mu m.$

MW1C.5 • 09:00

High-Average-Power, Deep-Infrared, Ti:sapphire-Pumped Femtosecond Optical Parametric Oscillator

Based on CdSiP₂, Callum F. O'Donnell^{1,2}, Chaitanya Kumar Suddapalli^{1,2}, Kevin Zawilski³, Peter G. Schunemann³, Majid Ebrahim-Zadeh^{2,4}; ¹Radiantis, Spain; ²ICFO - Institut de Ciencies Fotoniques, Spain; ³BAE *Systems, USA; ⁴ICREA, Spain.* We report a femtosecond optical parametric oscillator across 6654-8329 nm based on CdSiP₂ pumped directly by a Ti:sapphire laser, generating 19 mW of average power at 7317 nm in ~300-fs pulses at 80.5 MHz.

13 nm FEL Prospects for Lithography, Eleonore

Roussel¹; ¹Laboratoire de Physique des Lasers, Atomes et Molécules, France. Free-Electron Lasers appear to be an alternative to overcome the power limitation of the present extreme ultraviolet (EUV) laser sources. We will present the possible FEL configurations that can meet the requirement for EUV lithography.

MICS

Orangerie A

08:00 -- 10:00

MW1C • Nonlinear Frequency Conversion and Parametric Sources I

Presider: Benoit Boulanger; Neel Inst., France

MW1C.1 • 08:00

Efficient optical parametric generation pumped by a sub-nanosecond MOPA source, Hideki Ishizuki¹, Takunori Taira¹; ¹Inst. for Molecular Science, Japan. Efficient PPMgLN-OPG for both 1.5-µm and 3.3-µm generation was demonstrated. Maximum output energy of 2.06mJ and 0.71mJ for signal and idler waves could be obtained with 46% conversion efficiency at 5.98mJ sub-nanosecond-pulse pumping.

MW1C.2 • 08:15

Tunable, Continuous-Wave, Multi-Milliwatt Mid-Infrared Source Across 4.6-4.7 µm Based on Orientation-Patterned GaP, Kavita Devi¹, Anuja Padhye¹, Peter G. Schunemann², Majid Ebrahim-Zadeh^{1,3}; ¹ICFO - The Inst. of Photonic Sciences, Spain; ²BAE Systems, Inc., USA; ³Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain. We report the first demonstration of tunable continuous-wave differencefrequency generation across 4608-4694 nm in OP-GaP, with maximum power of 43 mW at 4608 nm and passive power stability of 2.5% rms (1.5 mins), in good beam quality.

Orangerie B

Orangerie A

MICS

HILAS

EUV & X-ray

EW1B • EUV Lithography and Semiconductor

Manufacturing II - Continuing

08:00 -- 10:00 MW1C • Nonlinear Frequency Conversion and Parametric Sources I - Continuing

HW1A.5 • 09:15 Scaling Soliton Dynamics in Hollow Fibers, John C.

Travers¹, Teodora F. Grigorova¹, Federico Belli¹; ¹Heriot -Watt Univ., UK. Soliton dynamics in the visible and near -infrared can be scaled to millijoule energy levels and terrawatt peak powers in simple hollow capillary fibers. We describe subfemtosecond pulse self-compression and very high-brightness vacuum ultraviolet generation.

EW1B.4 • 09:15

08:00 -- 9:30

Characterization of Cross-sectional Profile of Periodic Surface Nanostructure Using CD-SAXS, Yoshiyasu Ito1, Kazuhiko Omote¹; ¹Rigaku Corp., Japan. We applied CD-SAXS to cross-sectional profile measurements of various surface nanostructures on quartz substrates. We compared the results with SEM and TEM, and it was shown that the results well reproduced the electron microscope results.

MW1C.6 • 09:15

Optimally Output-coupled, Deep-infrared, Picosecond Optical Parametric Oscillator Based on CdSiP₂,

Chaitanya Kumar Suddapalli^{1,3}, Josep Canals Casals¹, Shahrzad Parsa¹, Kevin Zawilski², Peter G. Schunemann², Majid Ebrahim-Zadeh^{1,4}; ¹ICFO - The Inst. of Photonic Sciences, Spain; ²BAE Systems Inc., USA; ³Radiantis, Spain; ⁴Institucio Catalana de Recerca i Estudis Avancats (ICREA), Spain. High-repetition-rate picosecond OPO based on CdSiP₂ is demonstrated achieving tunable idler across 6205-6724 nm and tunable signal across 264-1284.2 nm, providing 95 mW at 6205 nm and 44 mW at 1284 nm at 80 MHz, with good beam-quality.

HW1A.6 • 09:30

Time-dependent multiconfiguration methods for intense laser-driven multielectron dynamics, Takeshi

Sato¹, Kenichi L. Ishikawa¹; ¹Univ. of Tokyo, Japan. We have developed time-dependent multiconfiguration methods for ab initio descriptions of multielectron dynamics in intense laser fields. This report describes our efficient implementation and numerical applications of these methods for many-electron atoms.

HW1A.7 • 09:45

distributions.

Tunneling Site of H2+ in Strong Circularly Polarized Laser Fields, Kunlong Liu¹, Ingo Barth¹; ⁷Max Planck Inst. of Microstructure Physics, Germany. The tunneling site of molecules in strong laser fields has a large impact on the ultrafast dynamics of the ionizing electron on the polyatomic Coulomb potential and can be identified with lateral photoelectron momentum

MW1C.7 • 09:30

High-power broadband mid-IR difference-frequency generation driven by a Tm-doped fiber laser, Tobias Heuermann^{1,2}, Christian Gaida¹, Martin Gebhardt^{1,2}, Fabian Stutzki^{1,3}, Cesar Jauregui¹, Jose Antonio-Lopez⁴, Axel Schülzgen⁴, Rodrigo Amezcua-Correa⁴, Ioachim Pupeza⁵, Jens Limpert^{1,2}, Andreas Tünnermann^{1,3}; ¹Friedrich-Schiller-Univ. Jena, Germany; ²Helmholtz-Inst. Jena, Germany; ³Fraunhofer Inst. for Applied Optics and Precision Engineering, Germany; ⁴Univ. of Central Florida, USA; ⁵Max-Planck-Inst. of Quantum Optics, Germany. We present efficient, ultrabroadband intrapulse difference-frequency generation driven by a Tm-doped fiber laser resulting in an average midinfrared output power of 450 mW spanning more than one octave (-10 dB width) at a central wavelength of 12 μm.

MW1C.8 • 09:45

Single-cycle, high-power, mid-IR optical parametric chirped amplifier, Ugaitz E. Etxano¹, Matthias Baudisch¹, Tobias Steinle¹, Hugo Pires¹, Francesco Tani², Michael H. Frosz², Felix Köttig², Alexey Ermolov², Philip S. Russell², Jens Biegert^{1,3}; ¹The Inst. of Photonic Sciences ICFO, Spain; ²Max Planck Inst. for the Science of Light, Germany; ³ICREA, Spain. We demonstrate efficient generation of 1.35-optical-cycle (14.5 fs) and $60 \ \mu J \ mid$ -IR pulses at 160 kHz repetition rate. The CEP -stable, 21 W mid-IR waveforms are self-compressed inside a gas-filled antiresonant-reflection photonic crystal fiber (ARR-PCF).

10:00—10:30 • Coffee Break with Exhibitors, Foyer Orangerie

Orangerie B

Orangerie A

MICS

HILAS

10:30 -- 12:15 HW2A • Ultrafast dynamics II Presider: Daniele Brida; Univ. of Konstanz, Germany

HW2A.1 • 10:30 Invited

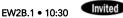
Quantum Spectrometer in the XUV Spectral Range: High-order Harmonics Measured by Counting the Photons of the IR Driving Laser Field, Paraskevas

Tzallas¹; *[†]ORTH-IESL, Greece.* We demonstrate a quantum-optical approach for the description of strong -field laser atom interaction. The approach, was used for the measurement of the high-order-harmonics emitted by gases without the use of conventional XUV grating spectrometer.

HW2A.2 • 11:00

Quantum-Path-Sensitive Inline XUV Interferometry,

David T. Lloyd¹, Adam S. Wyatt^{2,1}, Richard Chapman², Chris Thornton², Paulina Majchrzak², Alfred Jones², Emma Springate², Kevin O'Keeffe³; ¹Dept. of Physics, Univ. of Oxford, UK; ²Central Laser Facility, STFC Rutherford Appleton Lab, UK; ³Dept. of Physics, Swansea Univ., UK. An XUV interferometer composed of two inline high harmonic generation regions is used to characterize different ionized electron quantum paths. We unambiguously observe interference between long and short trajectories, revealing their attosecond-scale relative timing.


HW2A.3 • 11:15

Single-shot diffractive imaging of individual helium nanodroplets with intense multicolor XUV pulses, Nils Monserud¹, Bruno Langbehn², Mario Sauppe², Julian Zimmermann^{1,2}, Annabelle Spanier², Pablo Nuñez von Voigt², Bernd Schütte¹, Yevheniy Ovcharenko³, Thomas Möller², Fabio Frassetto⁴, Luca Poletto⁴, Andrea Trabattoni⁵, Francesca Calegari^{5,6}, Mauro Nisoli^{6,7}, Katharina Sander⁸, Christian Peltz⁸, Marc Vrakking¹, Thomas Fennel^{1,8}, Arnaud Rouzée¹, Daniela Rupp^{1,2}; ¹Max-Born Inst., Germany; ²TU Berlin, Germany; ³European XFEL, Germany; ⁴CNR, Istituto di Fotonica e Nanotech. Padova, Italy; 5CFEL, DESY, Germany; 6CNR, Istituto di Fotonica e Nanotech. Milano, Italy; 7Politecnico di Milano, Italy; ⁸U Rostock, Germany. We report on single-shot coherent diffractive imaging of isolated helium nanodroplets obtained with intense multicolor XUV pulses from a high harmonic source. The wide-angle scattering patterns yield the droplets' shapes and refractive indices.

HW2A.4 • 11:30

Ultrafast Point-Projection Electron Microscopy of Photoelectron Emission from a Single Plasmonic Nanoresonator, Christoph Lienau¹; ¹Carl V. Ossietzky Univ. Oldenburg, Germany. The ultrafast motion of electrons that are photoemitted from a nanoresonator is filmed using plasmon-driven electron microscopy with unprecedented spatio-temporal resolution. EUV & X-ray

10:30 -- 12:30 EW2B • High Harmonic Generation Presider: Annie Klisnick; CNRS, France

High harmonic generation as an ultrafast EUV source for circular dichroism and attosecond photoionization spectroscopies, Pascal L. Salieres¹; ¹CEA, CNRS, Paris-Saclay Univ., France. I will review our recent studies where photoionization: i) is used to measure the complete polarization state of the high harmonic source, and ii) is studied close to autoionizing resonances with attosecond resolution.

Generation of high-order harmonics at 100 kHz for attosecond science experiments, Federico J. Furch¹, Felix Schell¹, Tobias Witting¹, Peter Šušnjar¹, Fabio Cavalcante², Carmen S. Menoni², Claus P. Schulz¹, Marc J. Vrakking¹; *1Max Born Inst., Germany; ²Dept. of Electrical and Computer Engineering, Colorado State Univ., USA*. The progress in the development of a high acquisition rate attosecond XUV-IR pump-probe beamline is discussed. A high repetition rate parametric amplifier allows driving the harmonic generation process at a repetition rate of 100 kHz.

10:30 – 12:30 MW2C • Nonlinear Frequency Conversion and Parametric Sources II Presider: Giuseppe Leo; Univ. Paris-Diderot Paris VII, France

MW2C.1 • 10:30 Invited

Broadband and High Power Mid-Infrared Optical Parametric Amplification via Quasi-Phase-Matching

Devices, Ursula Keller¹, Christopher R. Phillips¹; *[†]ETH Zurich, Switzerland*. We present ultra-broadband, high power, high-repetition-rate mid-infrared optical parametric chirped pulse amplification (OPCPA) based on quasi-phase-matching (QPM) devices. Our system utilizes patterned and large-aperture QPM devices to yield a near-octave-spanning spectrum around 2.2 mm wavelength.

MW2C.2 • 11:00

Broadband Noncollinear Optical Parametric

Amplification in GaSe Pumped at 1.5µm, Rimantas Budriunas^{1,2}, Dainius Kučinskas^{1,2}, Tomas Stanislauskas¹, Darius Gadonas¹, Anne-Lise Viotti³, Andrius Zukauskas³, Fredrik Laurell³, Valdas Pašiškevičius³, Arunas Varanavicus²; *'Light Conversion Ltd., Lithuania; ²Laser Research Center, Vilnius Univ., Lithuania; Royal Inst. of Tech., Sweden.* A noncollinear parametric amplification scheme using the highly nonlinear and damageresistant GaSe crystal is demonstrated. Amplification bandwidths allowing 10-15fs compressed pulse durations are achieved at 2µm signal wavelength.

MW2C.3 • 11:15

Intracavity-pumped, cascaded optical parametric oscillator based on BaGa₂GeSe₆, Andrey Boyko^{1,2}, Valeriy Badikov³, Galina Shevyrdyaeva³, Dmitrii Badikov³, Valdas Pasiskevicius⁴, Andrius Zukauskas⁴, Valentin Petrov¹; ¹Max Born Inst., Germany; ²Special Tech., Russia; ³High Tech. Lab, Russia; ⁴Royal Inst. of Tech., Sweden. We employ the new chalcogenide crystal BaGa₂GeSe₆ for the first time for frequency down-conversion into the mid-IR, in an optical parametric oscillator (OPO), intracavity pumped by the signal wave of a 1.064-µm pumped Rb:PPKTP OPO.

EW2B.3 • 11:30

Towards Generation of Ultrahigh Energy XUV Pulses, Mathieu Dumergue¹, Sergei Kuehn¹, Arjun Nayak¹, Emmanuel Skantzakis², John Makos², John Orfanos², Dimitris Charalambidis^{2,1}, Paraskevas Tzallas^{2,1}; *¹ELI-HU Nonprofit Ltd., Hungary; ²FORTH-IESL, Greece.* We present conditions, based on loose focusing geometries, which can be used for the generation of ultrahigh power XUV pulses. Preliminary data regarding the approach's feasibility will be presented.

MW2C.4 • 11:30

High-Pulse Energy Mid-IR ZGP OPO with Divergence Compensation and High Beam Quality, Martin Schellhorn¹, Gerhard Spindler², Marc Eichhorn¹; ¹Inst. Franco-Allemand Recherches St. Louis, France; ²Retired, Germany. Using a Galilean telescope inside the OPO ring cavity, 36 mJ of mid-infrared pulse energy is obtained with 92 mJ of pump energy on crystal with M² = 1.5 for signal and idler beam.

Orangerie B

Orangerie A

EUV & X-ray

10:30 -- 12:30 HW2A • Ultrafast dynamics II - Continuing

HW2A.5 • 12:00

Absolute Gas Density Profiling In High Order Harmonic Generation, Antoine Comby¹, Samuel Beaulieu^{1,2}, Eric Constant³, Dominique Descamps¹, Stephane Petit¹, Yann Mairesse1; 1CELIA, France; 2INRS, Canada; 3Laboratoire de Spectrométrie Ionique et Moléculaire, France. We retrieve the full density profile of a gas jet by imaging the plasma induced by an intense laser. Thanks to this imaging we are able to monitor and optimize the high order harmonic generation.

HILAS

10:30 -- 12:30 EW2B • High Harmonic Generation - Continuing

EW2B.4 • 11:45

Separation of High Average Power Driving Lasers from Higher Order Harmonics Using an Annular Beam, Robert Klas^{1,2}, Alexander Kirsche¹, Maxim

Tschernajew^{1,2}, Andreas Tünnermann^{1,3}, Jan Rothhardt^{1,2}, Jens Limpert^{1,2}; ¹Inst. of Applied Physics, Friedrich Schiller Univ. Jena, Germany; ²Helmholtz Inst. Jena, Germany; ³Fraunhofer Inst. for Applied Optics and Precision Engineering, Germany. Annular beams are applied as an effective separation method for HHG with high average power driving lasers, showing a comparable conversion efficiency to HHG with a Gaussian beam.

EW2B.5 • 12:00

A Novel High Order Harmonic Source for Time- and Angle-Resolved Photoemission Experiments, Paolo Miotti^{1,2}, Federico Cilento³, Riccardo Cucini⁴, Aleksander De Luisa⁴, Andrea Fondacaro⁴, Fabio Frassetto¹, Damir Kopić³, Daniel Payne³, Andrea Sterzi³, Tommaso Pincelli^{4,5}, Giancarlo Panaccione⁴, Fulvio Parmigiani⁶, Giorgio Rossi^{4,5}, Luca Poletto¹; ¹CNR-IFN Luxor, Italy; ²Dept. of Info. Engineering, Univ. of Padova, Italy; ³Elettra - Sincrotrone Trieste, Italy; ⁴Lab. TASC, IOM-CNR, Italy; ⁵Dept. di Fisica, Univ. degli studi di Milano, Italy; ⁶Dept. of Physics, Univ. degli Studi di Trieste, Italy. The design and characterization of a HHG source conceived for Time and Angle Resolved PhotoElectron Spectroscopy (TR-ARPES) experiments are presented. The harmonics are selected through a grating monochromator with an innovative design able to provide XUV radiation for two distinct TR-ARPES setups.

EW2B.6 • 12:15

User-oriented kHz Laser Driven Sources of XUV and X-

rays at ELI Beamlines, Jaroslav Nejdl¹, Victoria Nefedova1; ¹ELI Beamlines project, Inst. of Physics, Czechia. Research on coherent XUV HHG source will be presented as a starting point for the user-oriented HHG Beamline that is being commissioned together with the Plasma X-ray Source at ELI Beamlines.

MICS

10:30 -- 12:30

MW2C • Nonlinear Frequency Conversion and Parametric Sources II - Continuing

MW2C.5 • 11:45

Singly-Resonant Optical Parametric Oscillator Based on Orientation-Patterned Gallium Phosphide, Hanyu Ye¹, Chaitanya Kumar Suddapalli², Junxiong Wei¹, Peter G. Schunemann³, Majid Ebrahim-Zadeh^{1,4}; ¹ICFO-Inst. de Ciencies Fotoniques, Spain; ²Radiantis, Spain; ³BAE Systems, Inc., USA; ⁴Inst. Catalana de Recerca i Estudis Avancats (ICREA), Spain. We report a pulsed singlyresonant optical parametric oscillator based on orientation-patterned gallium phosphide pumped by a O-switched Nd·YAG laser. The mid-IR idler can be tuned across 2.8-3.1 µm with an average power of 20 mW.

MW2C.6 • 12:00

High-Power, High-Beam-Quality, Idler-Resonant Mid-Infrared Picosecond Optical Parametric Oscillator,

Shahrzad Parsa¹, Chaitanya Kumar Suddapalli², Kavita Devi¹, Majid Ebrahim-Zadeh^{1,2}; ¹/CFO-Institut de Ciencies Fotoniques, Spain; ²Radiantis, Spain. An Yb-fiberpumped idler-resonant picosecond optical parametric oscillator based on MgO:PPLN is presented providing up to 3.5 W mid-IR output power tunable across 2198-4028 nm in excellent spatial beam quality over the entire tuning range.

MW2C.7 • 12:15

Single-Cycle or Arbitrarily Shaped Octave-Spanning Mid-Infrared Pulses: Intrinsic and Extrinsic Pulse Shaping in Adiabatic Frequency Conversion, Noah Flemens¹, Peter Krogen², Haim Suchowski⁴, Houkun Liang², Kyung-Han Hong², Franz X. Kaertner^{2,3}, Jeffrey A. Moses^{1,2}; ¹School of Applied & Engineering Physics, Cornell Univ., USA; ²Dept. of Electrical Engineering & Computer Science MIT, USA; 3Center for Free-Electron Laser Science, DESY & Physics Dept., Univ. of Hamburg, Germany; ⁴Raymond & Beverly Sackler School of Physics & Astronomy, Tel Aviv Univ., Israel. Adiabatic frequency conversion following parametric chirped-pulse amplification generates a greater-than-octave-spanning energetic mid-IR pulse of single-cycle duration or with complex programmable pulse shaping. For some applications, intrinsic dispersion engineering can eliminate the pulse shaper.

12:30-14:00 • Lunch on your own

Orangerie A

MICS

Presider: Hiroaki Minamide; RIKEN,

MW3C • THz Generation and

Orangerie D-E

HILAS

14:00 -- 15:45 HW3A • Nonlinear Phenomena and HHG

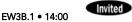
Presider: Yann Mairesse; Centre Lasers Intenses et Applications, France

HW3A.1 • 14:00

Circular Dichroism in High Harmonic Generation from Chiral Molecules, Yoichi Harada¹, Eisuke Haraguchi¹, Keisuke Kaneshima¹, Taro Sekikawa¹; ¹Hokkaido Univ., Japan. Circularly polarized high harmonic generation from a chiral molecule was found to significantly depend both on the chirality and on the rotating direction of the circularly polarized counter-rotating two-color driving laser fields.

HW3A.2 • 14:15

Anomalies observed in the cut off law of High-order Harmonics Generation. Are spatially inhomogeneous fields the key for this change?, Enrique Neyra³, Fabian Videla³, Marcelo F. Ciappina¹, Jose Perez-Hernández², Luis Roso², Maciej Lewenstein⁴, Gustavo Torchia³; *¹EL*-Beamlines, Czechia; ²CLPU, Spain; ³CIOP, Argentina; ⁴ICFO, Spain. We studied HHG in gases driven by plasmonic-enhanced fields. We demonstrated that the spatial inhomogeneous and bounded character of the electric field, modeled by Gaussian


HW3A.3 • 14:30

-shaped functions, leads to an unexpected relationship between the HHG cutoff and the laser wavelength.

Spectral Selection of High Harmonics via Spatial Filtering, Constance Valentin¹, Ludovic Quintard¹, Jan Vabek¹, Frederic Burgy¹, Clément Péjot¹, Fabrice Catoire¹, Eric Constant^{2,1}, Eric Mevel¹; *1CNRS -CELIA, France; ²ILM - CNRS, France.* High order harmonics generated in gas provide a coherent XUV source with spatial profiles depending on the harmonic order. Spatial filtering is a way to select few harmonics without any metallic filter or XUV mirror. EUV & X-ray

14:00 -- 16:00 EW3B • Free-electron Laser and Electron Beam Sources II

Presider: Zhentang Zhao; Shanghai Inst. of Applied Physics, China

A Compact Wakefield Accelerator for a High Repetition Rate Multi User X-ray Free-Electron Laser Facility, Alexander Zholents¹; ¹Argonne National Lab, USA. A concept is presented for a multi beamline x-ray FEL user facility driven by an array of highly efficient compact collinear wakefield accelerators (CWA) where Čerenkov radiation of a 400 MeV high charge drive bunch is used to accelerate a low charge witness bunch to 2 GeV to produce soft x-rays in the FEL.

14:00 -- 16:00

Japan

Frequency Combs

High-Energy THz Generation and Electron Acceleration, Franz X. Kaertner^{1,2}, ¹Universität Hamburg, Germany; ²Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron, Germany. Approaches towards efficient high-energy THz pulse generation and its use in THz electron acceleration are discussed. Theoretical and experimental results towards THz guns and accelerators are presented.

14:00 -- 16:00 HW3D • Ultrashort pulse generation & characterization Presider: Tamas Nagy; Max Born

Inst., Germany

Spatio-Temporal Couplings of Ultrashort Lasers: Metrology and Applications, Fabien Quéré¹; ⁷CEA Saclay, France. This talk will present two simple techniques for the complete spatiotemporal characterization of ultrashort laser beams, and summarize the results of recent measurements performed on lasers of peak power of up to 1 PW.

EW3B.2 • 14:30

Laser Acceleration of Electrons on a Chip, Peter Hommelhoff¹, Joshua McNeur¹, Martin Kozak^{1,2}, Roy Shiloh¹, Peyman Yousefi¹, Norbert Schönenberger¹, Ang Li¹, Johannes Illmer¹; ¹Friedrich-Alexander-Universität Erlangen, Germany; ²Charles Univ., Czechia. Pulsed laser fields at nanophotonic structures allow efficient acceleration of electrons with large gradients, potentially enabling miniscule accelerators for various purposes. We will present an update of the Accelerator on a Chip International Program (ACHIP).

provided.

MW3C.2 • 14:30 Mid Infrared Kerr Frequency Comb and Coherent Super-Continuum Generation in Silicon Nitride Integrated Waveguides, Tobias J. Kippenberg¹; ¹Ecole Polytechnique Federale de Lausanne, Switzerland. Abstract not

HW3D.2 • 14:30

XPW and SHG d-scan characterization of sub-1.5-cycle pulses, Ayhan Tajalli1, Marie Ouillé², Aline Vernier², Frederik Böhle², Esmerando Escoto³, Janos Csontos⁴, Rosa Romero⁵, Uwe Morgner^{1,6}, Helder Crespo^{5,7}, Rodrigo Lopez Martens², Gunter Steinmeyer³, Tamas Nagy³; Leibniz University Hannover, Germany; ²Lab. d'Optique Appliquée, Ecole Nationale Superieur de Techniques Avancées-Paristech, Ecole Polytechnique, France; ³Max Born Inst. , Germany; ⁴ELI-HU Non-Profit Ltd., Hungary; 5Sphere Ultrafast Photonics, LDA, Portugal; ⁶Laser Zentrum Hannover e.V., Germany; 7IFIMUP-IN , Univ. do Porto, Portugal. We characterized 4fs pulses of a high-energy Ti:Sa system under vacuum condition by d-scan arrangements using second harmonic generation and cross-polarized wave generation as nonlinearities. Both methods deliver similar temporal shapes and consistent pulse durations.

Orangerie C

EUV & X-ray

Orangerie A

MICS

Orangerie D-E

HILAS

14:00 -- 15:45 HW3A • Nonlinear Phenomena and EW3B • Free-electron Laser and HHG - Continuing

Invited HW3A.4 • 14:45

High Harmonic Generation (HHG) inside an ultrafast thin disk laser: a new approach for compact megahertz coherent XUV sources, Thomas Sudmeyer¹; ¹Université de Neuchâtel, Switzerland. Abstract not avaialable.

14:00 -- 16:00 Electron Beam Sources II - Continuing

14:00 -- 16:00 MW3C • THz Generation and Frequency Combs - Continuing

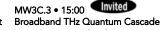
HILAS

14:00 -- 16:00 HW3D • Ultrashort pulse generation & characterization -Continuing

HW3D.3 • 14:45 Generation of Ultrashort Pulses by Four Wave Mixing in a Gas-filled Hollow Core Fiber, Anna Gabriella Ciriolo¹, Giacomo Mariani¹, Matteo Negro², Michele Devetta², Davide Faccialà², Aditya Pusala¹, Caterina Vozzi², Salvatore Stagira^{1,2}; ¹Politecnico di Milano, Italy; ²CNR-IFN, Italy. We report on the implementation of a tunable source of ultrashort tens-uJlevel pulses based on Four-Wave-Mixing inside a gas-filled hollow-corefiber for few-cycle pulse generation

from the visible to the mid-IR.

HW3D.4 • 15:00 Role of Intrapulse Coherence in Carrier -Envelope Phase Stabilization, Nils Raabe¹, Tianli Feng¹, Tobias Witting¹, Ayhan Demircan^{2,3}, Carsten Brée⁴, Gunter Steinmeyer1; 1 Max Born Inst., Germany; ²Leibniz Univ. Hannover, Germany; ³Hannover Centre for Optical Tech., Germany; ⁴Weierstrass Inst. for Applied Analysis and Stochastics, Germany. The concept of intrapulse coherence is defined for judging a fixed phase relation between different spectral components within a laser pulse. This new criterion plays an


important role for passive CEP stabilization of OPA systems.

HW3D.5 • 15:15 Long-Lived Index Changes Induced by Femtosecond Ionization in Ar-Filled Hollow-Core PCF, Johannes R.

Koehler¹, Francesco Tani¹, Barbara M. Trabold¹, Felix Köttig¹, Mallika I. Suresh¹, Philip S. Russell¹; ¹Max Planck Inst. for the Science of Light, Germany. We observe long-lived refractive index changes in the hollow core of an argon -filled anti-resonant-guiding photonic crystal fiber, caused by plasma formation through femtosecond pulse compression and probed interferometrically through the fiber cladding.

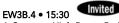
EW3B.3 • 15:00 Invited

Attosecond Metrology of Partially Coherent Photoelectron Wavepackets, Charles Bourassin-Bouchet¹, Lou Barreau², Vincent Gruson², Fabien Quéré², Theirry Ruchon², Pascal L. Salieres²; ¹Institut d'Optique, France; ²LIDYL, CEA, CNRS, Univ. Paris-Saclay, CEA Saclay, France. We developed a novel experimental technique named Mixed-FROG for the metrology of attosecond XUV pulses. This method provides information on both the coherent and incoherent phenomena that take place during the pulse characterization.

Laser Frequency Combs, Giacomo Scalari¹; ¹ETH Zurich, Switzerland. Latest results on frequency combs based on THz quantum cascade lasers will be presented including the monolithic integration of octavespaced combs and the broadband comb operation up to 1.1 THz bandwidth centered at 3.0 THz.

Anna Gabriella Ciriolo¹, Rebeca Martinez Vazquez², Davide Faccialà², Matteo

HW3A.5 • 15:15


Negro², Michele Devetta², Diogo Pereira Lopes^{1,2}, Aditya Pusala¹, Prasannan Geetha Prabhash^{1,2}, Caterina Vozzi², Roberto Osellame^{1,2}, Salvatore Stagira^{1,2}; ¹Politecnico di Milano, Italy; ²Istituto di Fotonica e Nanotecnologie, CNR, Italy. We demonstrate the generation of highorder harmonics in a fused-silica chip produced by femtosecond laser micromachining. This achievement paves the way to the miniaturization of HHG applications from large-scale Labs to microdevices.

High-order Harmonic Generation in a

Femtosecond-laser-micromachined Chip.

Orangerie B	Orangerie C	Orangerie A	Orangerie D-E
HILAS	EUV & X-ray	MICS	HILAS
14:00 15:45 HW3A • Nonlinear Phenomena and HHG - Continuing	14:00 16:00 EW3B • Free-electron Laser and Electron Beam Sources II - Continuing	14:00 16:00 MW3C • THz Generation and Frequency Combs - Continuing	14:00 16:00 HW3D • Ultrashort pulse generation & characterization -

HW3A.6 • 15:30 Spatio-Spectral Structures in High Harmonic Generation Driven by High Repetition Rate Laser Sources, Aura I. Gonzalez^{1,2}, Gaëtan Jargot^{1,3}, Philippe Rigaud¹, Loïc Lavenu^{1,4}, Florent Guichard⁴, Antoine Comby⁶, Thierry Auguste², Olivier Sublemontier⁵, Michel Bougeard², Yoann Zaouter⁴, Patric Georges¹, Marc Hanna¹, Theirry Ruchon²; ¹Institut d'Optique Graduate School, Lab. Charles Fabry, France; ²LIDYL, CEA, CNRS, Univ. Paris-Saclay, France; ³Fastlite, France; ⁴Amplitude Systemes, France; 5NIMBE, CEA, CNRS, Univ. Paris-Saclay, France; ⁶CELIA, Univ. de Bordeaux - CNRS - CEA, France. We investigate the spatio-spectral properties of HHG driven by two laser systems based on Yb-fiber amplifiers (highrep.rate >100kHz), centered at 1.55µm and 1.03µm. Ring-like structures are observed and explained by the transverse atomic-induced phase.

A Compact High-Power Radiation Source Based on Steady-State Microbunching

Mechanism, Alexander W. Chao¹; ¹Tsinghua Univ., China. An initial effort is being made at the Tsinghua Univ., Beijing, to design a small electron storage ring that incorporates the Steady-State Microbunching (SSMB) mechanism for the purpose to generate high-power CW radiation in the frequency range from IR to EUV. In this talk, the principle of the SSMB is first reviewed and the status of the design effort is then presented. MW3C.4 • 15:30

100-kHz-Repetition-Rate Terahertz-Wave Parametric Generator for Imaging Applications, Yoshikiyo

Imaging Applications, Yoshikiyo Moriguchi^{1,2}, Yu Tokizane¹, Yuma Takida¹, Kouji Nawata¹, Shigenori Nagano², Taizo Eno², Masahiro Akiba², Hiroaki Minamide¹; *1Tera-Photonics Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, Japan; ²Topcon Corp., Japan.* We investigated the performance of an injection-seeded THz-wave parametric generator at a repetition frequency in the 100-kHz regime. We obtained a THz-wave output of ~30 µW in the range of 1.0–2.8 THz.

Continuing HW3D.6 • 15:30 Electric-field induced secondharmonic generation in atmospheric air with quasi-phase matching, Tianli Feng¹, Nils Raabe¹, Pascal Rustige¹, Gunter Steinmever¹: 'Max Born Inst.

Gunter Steinmeyer¹; 'Max Born Inst., Germany. Frequency doubling of an amplified laser is experimentally demonstrated with electric-field induced second-harmonic generation in air. The method promises application with unattenuated terawatt laser and offers wavelength conversion beyond the ultraviolet limit of nonlinear crystals.

MW3C.5 • 15:45 Multi-mW, Few-Cycle Mid-Infrared

Continuum Spanning From 500 to 2250 cm⁻¹, Jinwei Zhang², Ka Fai Mak², Nathalie Nagl¹, Marcus Seidel¹, Dominik Bauer³, Dirk Sutter³, Pervak Vladimir¹, Ferenc Krausz^{2,1}, Oleg Pronin²; ¹Ludwig-Maximilians-Universität München, Germany; ²Max Planck Inst. of Quantum Optics, Germany; ³Trumpf Laser GmbH, Germany. We report a 2-octave midinfrared continuum simultaneously spanning from 500 cm-1 to 2250 cm-1 at 24 mW of average power. It is based on difference frequency generation driven by a newly developed femtosecond Ho:YAG thindisk oscillator.

HW3D.7 • 15:45

Experimental Demonstration of High-Energy Deep Ultraviolet Pulse Generation Through Soliton Dynamics in Gas-Filled Hollow Capillary Fibers, Teodora F. Grigorova¹, Federico Belli¹, John C. Travers¹; ¹Heriot-Watt Univ., UK. Using soliton dynamics in 250 µm diameter Ne-filled hollow capillaries, we generate tunable, $> 5 \mu$ J, ultrafast pulses in the deep ultraviolet (200-330 nm). Further energy scaling and extension to the vacuum ultraviolet is predicted.

16:00—16:30 • Coffee Break with Exhibitors, Foyer Orangerie

Orangerie B

Orangerie C

HILAS

16:30 -- 18:30 HW4A • Extreme Light Infrastructure -Capabilities & Experiments Presider: Emily Sistrunk; Lawrence Livermore National Lab., USA

HW4A.1 • 16:30

The ELI ALPS Research Infrastructure: Scaling Attosecond Pulse Generation for a Large Scale

Infrastructure, Balazs Major¹, Balázs Farkas¹, Mathieu Dumergue¹, Katalin Kovacs², Sergei Kuehn¹, Anne L'Huillier³, Balazs Nagyillés¹, Piotr Rudawski³, Valer Tosa², Paraskevas Tzallas¹, Dimitris Charalambidis¹, Karoly Osvay¹, Giuseppe Sansone¹, Katalin Varjú¹; ¹*ELI-ALPS, Hungary; ²National Inst. for R&D of Isotopic and Molecular Tech., Romania; ³Dept. of Physics, Lund Univ., Sweden.* Along with the review of the technological frame that will be available at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI-ALPS) we present considerations applicable to large-scale attosecond sources driven by high-power laser pulses.

HW4A.2 • 17:00

Progress in Development of High-Repetition Rate, High-Power Short-Pulse Lasers for ELI-Beamlines, Pavel Bakule¹; *'Inst. of Physics ASCR, ELI Beamlines, Czechia.* Abstract not provided.

HW4A.3 • 17:15

Prospects on 10PW Lasers Technologies at ELI-NP, Daniel Ursescu¹; ¹Horia Hulubei National Inst. of Physics and Nuclear Engineering, Extreme Light Infrastructure, Romania. ELI-NP facility implements a dual arm 10PW laser system based on OPCPA front-end and subsequent amplification in Ti:Sapphire. Related technical developments concerning laser, beam transport, diagnostics, beam conditioning and components qualification will be briefly reviewed.

HW4A.4 • 17:30

A 15 W, Few-Cycle and Ultra-Stable Mid-infrared Parametric Source for ELI-ALPS, Nicolas Thiré¹, Raman Maksimenka¹, Balint Kiss², Clément Ferchaud¹, Pierre Bizouard¹, Sebastian Jarosch³, Vittorio Di Pietro¹, Eric Cormier², Karoly Osvay², Nicolas Forget²; *1⁻ fastlite*, *France*; ²*ELI-HU Non-Profit Ltd, Hungary*; ³*Imperial College London, UK*. A 100-kHz, 15-W, CEP-stable OPCPA delivering 4-cycle pulses at ~3.2 µm was installed at ELI-ALPS. Ultra-stable operation over >8 h including a pulse-to-pulse energy stability <0.7% rms, CEP noise of 65 mrad rms is reported.

EUV & X-ray

16:30 -- 18:15 EW4B • Compact Sources II Presider: Marie-Emmanuelle Couprie; Synchrotron SOLEIL, France

EW4B.1 • 16:30 The Munich Compact Light Source (MuCLS): Principles and Application Examples, Franz Pfeiffer¹; ¹Munich School of BioEngineering, Technische Univ. Munchen, Germany. The Munich Compact Light Source is the first user-dedicated compact laser-undulator synchrotron source, and was installed a few years ago at the Technical Univ. in Munich for Biomedical Imaging Applications. This talk will review the basic principals of the machine, the challenges in installation and operation, and provide an overview of the first successful biomedical application experiments carried out so far.

EW4B.2 • 17:00

A New Method of Generating Femto- and Attosecond Pulses of Coherent EUV and X-ray Radiation, Vitaly Papadichev¹; ¹Lebedev Physical Inst., RAS, Russia. A new method of generating femto- and attosecond pulses of coherent EUV and X-ray radiation is proposed. The laser pulses are reflected by a moving oppositely equidistantly arranged electron mirrors, created using field emission.

EW4B.3 • 17:15

Generating intense coherent EUV radiation via threedimensional manipulation of the electron beam in storage rings, Chao Feng¹, Bocheng Jiang¹, Changliang

Li¹, Xiaofan Wang¹, Zhentang Zhao¹, Alexander W. Chao²; ¹SINAP, China; ²Tsinghua Univ., China. We consider a compact storage-ring-based EUV light source with the recently proposed electron beam manipulation technique. Theoretical analysis and numerical simulations demonstrated that this technique can be used for the generation of intense fully temporal coherent EUV in storage rings.

EW4B.4 • 17:30

Twisted X-rays and Gamma-rays for Atomic and Nuclear Spectroscopy, Andrei Afanasev¹, Carl E. Carlson², Maria Solyanik¹; ¹George Washington Univ., USA; ²College of William and Mary, USA. Twisted photons, or photons with additional angular momentum along their propagation direction were experimentally demonstrated to defy conventional quantum selection rules for photo-absorption by atoms. We discuss physics implications of the twisted-photon sources at higher energies.

MICS

16:30 -- 18:15 MW4C • Comb Spectroscopy, Materials Processing

Presider: Angela Vasanelli; Univ. Paris Diderot, France

Mid-Infrared Dual-Comb Spectroscopy for Atmospheric Gas Sensing, Nathan R. Newbury¹, Gabriel Ycas¹, Fabrizio Giorgetta¹, Esther Baumann¹, Ian Coddington¹, Daniel Herman¹, Eleanor Waxman¹, Kevin Cossel¹, Scott A. Diddams¹; *1NIST, USA*. Midinfrared dual-comb spectroscopy has the potential to provide high resolution open path measurements of multiple atmospheric gases. I will discuss progress on a dual-comb spectrometer that operates from 2.6— 5.2 µm, designed for open-path spectroscopy.

MW4C.2 • 17:00

MW4C.1 • 16:30

In-bulk silicon processing with ultrashort pulsed lasers: Three-photon-absorption versus two-photon-

absorption, Roland A. Richter¹, Nikolai Tolstik¹, Irina T. Sorokina¹; *'NTNU, Norway*. We report the results of the numerical study of three-photon-absorption versus two-photon-absorption for in-bulk modification of silicon and show benefits of using longer wavelengths (>2.1 microns) for efficient and kerfless silicon processing with femtosecond lasers.

MW4C.3 • 17:15

Spectroscopic Investigations of Plasma Nitrocarburizing Processes with a Mid-infrared

Frequency Comb, Norbert Lang¹, Alexander Puth¹, Grzegorz Kowzan², Stephan Hamann¹, Jürgen Röpcke¹, Piotr Maslowski², Jean-Pierre H. van Helden¹; ¹Leibniz Inst. for Plasma Science & T, Germany; ²Nicolaus Copernicus Univ., Poland. A mid-infrared frequency comb is utilized for spectroscopic investigations of plasma nitrocarburizing processes with a carbon mesh as an active screen. The parameter-dependent behaviour of species such as HCN, CH₄, and NH₃ will be discussed.

MW4C.4 • 17:30

2 μm Dual-Comb Generation by Modulation

Instability for Spectroscopic Applications, Alexandre Parriaux¹, Kamal Hammani¹, Guy Millot¹; 'Université de Bourgogne, France. We experimentally demonstrate a new way of converting frequency combs in a highly nonlinear fiber. Using fourth order modulation instability, we converted around 2 µm an electro-optic modulated dual-comb setup to perform spectroscopy.

Orangerie B

Orangerie C

Orangerie A

HILAS

.

16:30 -- 18:30 HW4A • Extreme Light Infrastructure -Capabilities & Experiments - Continuing

HW4A.5 • 17:45

Robust Few-Cycle, CEP Stabilized, High Contrast OPCPA System with Average Power Exceeding 50W at

1kHz, Tomas Stanislauskas⁷, Rimantas Budriūnas^{1,2}, Jonas Adamonis³, Aidas Aleknavičius³, Gediminas Veitas¹, Darius Gadonas¹, Stanislovas Balickas³, Andrejus Michailovas³, Arunas Varanavicius²; ¹Light Conversion Ltd., Lithuania; ²Vilnius Univ. Laser Research Center, Lithuania; ³Ekspla Ltd., Lithuania. We present a table-top OPCPA system driven by diode-pumped Yb:KGW and Nd:YAG lasers, delivering ~3 cycle, CEP stabilized pulses with >5.5 TW peak power at 1kHz.

HW4A.6 • 18:00

5J Broadband OPCPA System with Repetition Rate 5 Hz, František Batysta¹; ¹Inst. of Physics ASCR, ELI Beamlines, Czechia. Abstract not provided.

HW4A.7 • 18:15

Laser Beam Circulator for the Generation of a High Brilliance Gamma Beam at ELI-NP, Kevin Cassou¹, Cheikh Fall Ndiaye^{1,2}, Nicolas Beaugerard², Kevin Dupraz¹, Franck Falcoz³, Denis Douillet¹, Titouan Le Barillec¹, Aurélien Martens¹, Yann Peinaud¹, Hervé Rocipon², Alessandro Variola⁴, Fabian Zomer¹; *1LAL, France; ²ALSYOM/SEIV - ALCEN, France; ³Amplitudes Technologies, France; ⁴LNF INFN, Italy.* We present the results of a 32 passes laser beam circulator commissioning aiming to bring a 100Hz, 40W average power frequency double Yb:Yag laser to more than 1kW average power for the inverse Compton scattering Gamma source of ELI-NP.

EUV & X-ray

16:30 -- 18:15 EW4B • Compact Sources II - Continuing

EW4B.5 • 17:45

Development of Cryogenic Undulators at SOLEIL, Amin

Ghaith¹, Mathiéu Valléau¹, Chamseddine Benabderrahmane², Fabien Briquez¹, Fabrice Marteau¹, Philippe Berteaud¹, Olivier Marcouille¹, Manuel Tilmont¹, Keihan Tavakoli¹, Nicolas Bechu¹, Jose Veteran¹, Christian Herbeaux¹, Mourad Sebdaoui¹, Marie Emmanuelle Couprie¹; ¹Synchrotron SOLEIL, France; ²European Synchrotron Radiation Facility, France. CPMUs enable to reduce the period, have additional number of periods within a given length, and thus achieve higher brightness at lower wavelength. CPMU are also suitable for future compact FEL applications.

EW4B.6 • 18:00

High Power Lasers for Gamma Source, Magali M. Durand¹, Pierre Sevillano¹, Olivier Alexaline¹, Alexis Casanova¹, Adrien Aubourg¹, Abdelhak Saci¹, Antoine Courjaud¹; ¹Amplitude Systèmes, France. A high intensity Gamma source required for Nuclear Spectroscopy can be delivered by the interaction between accelerated electron and intense laser beams. Those interactions lasers, based on multi-stage amplification, deliver 300mJ, 5ps pulses at 100Hz.

MICS

16:30 -- 18:15 MW4C • Comb Spectroscopy, Materials Processing - Continuing

MW4C.5 • 17:45

Octave-spanning Infrared Frequency Combs: Synthesis and Spectroscopy, Abijith Kowligy¹, Henry Timmers¹, Alex Lind^{1,5}, Nima Nader², Flavio Cruz¹, Myles Silfies³, Daniel Hickstein¹, David Carlson¹, Gabriel Ycas², Thomas Allison³, Peter G. Schunemann⁴, Scott Pap¹, Scott A. Diddams^{1,5}; ¹*Time* and Frequency Division, NIST, USA; ²Applied Physics Division, NIST, USA; ³Stonybrook Univ., USA; ⁴BAE Systems, USA; ⁵Dept. of Physics, Univ. of Colorado, USA. Using an amplified single-branch Er:fiber laser (100 MHz), we generate infrared (3—12 um) frequency combs in a combination of lithium niobate and orientation-patterned gallium phosphide. Dualcomb spectroscopy of trace gases and alcohol vapors is demonstrated.

MW4C.6 • 18:00

Mid-infrared Dual-Comb Spectroscopy at High Signalto-Noise Ratio around 3 µm, Zaijun Chen^{1,2}, Theodor Hänsch^{1,2}, Nathalie Picqué^{1,2}, ¹Max-Planck Inst. of quantum optics, Germany; ²Fakultät für Physik, Ludwig-Maximilians-Universität München, Germany. Multiheterodyne spectroscopy with difference frequency combs demonstrates 130000 resolved comb lines spanning more than 10 THz in the region centered at 90 THz. Signal-to-noise ratios higher than 1300 provide accurate molecular line parameter measurements.

Abad Mayor, Begoña - ET2B.6 Achterhold, Klaus - EM2B.3, EM2B.5 Adamonis, Jonas - HW4A.5 Adams, Daniel - ET2B.2, ET2B.6 Afanasev, Andrei - EW4B.4 Ahmadi, Hamed - HM2A.2 Ahr, Frederike - ET1B.4 Akiba, Masahiro - MW3C.4 Alam, Shaif-ul - MW1C.3 Aleknavičius, Aidas - HW4A.5 Alessi, David - HT1A.4 Alexaline, Olivier - EW4B.6 Allegre, Olivier J.- HT3A.4 Allison, Thomas - MW4C.5 Allott, Ric - ET2B.4 Almási, Gábor - EM3B.5, HM3A.4, HT3A.1 Aloian, Georgii A.- JT5A.25, JT5A.27 Alonso-Ramos, Carlos - MM3C.4 Amezcua-Correa, Rodrigo - MW1C.7 André, Thomas - EM4B.2 Andriukaitis, Giedrius - HT1A.5 Antici, Patrizio - HM3A.6, JT5A.23 Antipov, Sergey - EM4B.5 Antonio-Lopez, Jose - MW1C.7 Archipovaite, Giedre M.- MT2C.4 Armougom, Julie - MM4C.7 Armstrong, Chris - ET2B.4 Ashihara, Satoshi - HW1A.3 Aubourg, Adrien - EW4B.6 Auguste, Thierry - HW3A.6 Austin, Drake - HT3A.7 Auxier, Jason - MT2C.6 Aydin, Yigit O.- MM2C.1 Azhdast, Mohammad Hossein - JT5A.21 Backus, Sterling - MT1C.7 Badikov, Dmitrii - MT2C.1, MW2C.3 Badikov, Valeriy - MT2C.1, MW2C.3 Bagnoli, Enrico - MT3C.7 Bailly, Myriam - MT2C.3 Baird, Chris - ET2B.4 Bakke, Ingrid K.- MM2C.5 Bakule, Pavel - HW4A.2 Balciunas, Tadas - HT1A.5 Balickas, Stanislovas - HW4A.5 Ballabio, Andrea - MM3C.3, MM3C.4 Baltuška, Andrius - HM4A.6, HM4A.2, HM4A.4, HT1A.5 Barberio, Marianna - HM3A.6, JT5A.23 Barreau, Lou - EW3B.3 Barth, Ingo - HW1A.7 Barty, Christopher P.- EM2B.1 Batysta, František - HW4A.6 Baudisch, Matthias - MW1C.8 Bauer, Dominik - HT1A.6, MW3C.5 Baumann, Esther - MW4C.1 Bayerle, Alex - ET3B.4 Bayramian, Andy J.- HT1A.4 Bayya, Shyam - MM3C.5, MT2C.6 Beattie, David A.- MT3C.5 Beaugerard, Nicolas - HW4A.7 Beaulieu, Samuel - HM2A.3, HW2A.5 Bechu, Nicolas - EW4B.5 Bekele, Robel - MT2C.6 Belli, Federico - HW1A.5, HW3D.7 Belogolovskii, Dmitrii - JT5A.22 Benabderrahmane, Chamseddine - EW4B.5 Berakdar, Jamal - HM4A.7, JT5A.7 Bergé, Luc - JT4A.3 Bergues, Boris - HM2A.6 Bernard, Alice - MM3C.6 Bernerd, Cyril - MT2C.2 Bernier, Martin - MM2C.1 Berrill, Mark - ET1B.2 Berrou, Antoine - MM2C.4 Berteaud, Philippe - EW4B.5 Bertrand, Loic - ET1B.1 Bevis, Charles - ET2B.2

Bidaux, Yves - MT1C.2 Biegert, Jens - HT3A.8, MW1C.8 Bigioli, Azzurra - JT4A.5 Bizet, Laurent - MT3C.4 Bizouard, Pierre - HW4A.4 Blanchet, Valérie - HM2A.3 Blaser, Stéphane - MT1C.2 Bocoum, Maimouna - HT2A.3 Boehle, Frederik - HT2A.3 Böhle, Frederik - HM3A.3, HW3D.2 Bonora, Stefano - HT1A.3 Boreysho, Anatoly - JT5A.24 Borzsonyi, Adam - HT3A.5 Boudrioua, Azzedine - JT5A.8 Bougeard, Michel - HW3A.6 Boulanger, Benoit - MT2C.1, MT2C.2, MT2C.4, MT2C.5, MW1C Boulley, Laurent - MM3C.2 Bourassin-Bouchet, Charles - EW3B.3 Bourgeois, Nicolas - ET2B.4 Boursier, Elodie - MT2C.4 Bousseksou, Adel - MM3C.2 Boutami, Salim - MT2C.8 Bouzy, Pascaline - MT3C.8 Bovey, Fabian - MT3C.3 Bowman, Steve - MM3C.5 Boyd, Darryl - MM3C.5 Boyko, Andrey - MW2C.3 Brée, Carsten - HW3D.4 Brenner, Ceri - ET2B.4 Brida, Daniele - HT1A.2, HW2A Briquez, Fabien - EW4B.5 Brohez, Sylvain - JT5A.19 Brooks, Nathan - HM2A.4 Brown, Christopher - MM3C.5 Budnicki, Aleksander - HT1A.6 Budriunas, Rimantas - MW2C.2, HW4A.5 Burgdörfer, Joachim - HM4A.6 Burgy, Frederic - HW3A.3 Busse, Lynda - MT2C.6 Cadiou, Erwan - MM4C.3 Cai, Zhiping - JT5A.12 Caillat, Jérémie - HM2A.3 Cajiao V'elez, Felipe - HM4A.3 Calabrese, Allegra - JT4A.5 Calegari, Francesca - HM2A.2, HW2A.3 Canalias, Carlota - MT2C.5 Canals Casals, Josep - MW1C.6 Cao, Huabao - HT3A.5, JT5A.20 Capasso, Federico - JM1A.1 Cardenas, Daniel - HT2A.1 Cardin, Vincent - HT1A.5 Carlson, Carl E.- EW4B.4 Carlson, David - MW4C.5 Carpeggiani, Paolo - HM2A.2 Carras, Mathieu - MT3C.4 Casanova, Alexis - EW4B.6 Cassou, Kevin - HW4A.7 Catoire, Fabrice - HW3A.3 Cavalcante, Fabio - EW2B.2 Celestre, Rafael - ET1B.3 Chacón, Alexis - HM4A.5 Chalus, Olivier - HT3A.8 Chang, KaiHsun - JT5A.8 Chao, Alexander W.- EW3B.4, EW4B.3 Chapman, Richard - HW2A.2 Charalambidis, Dimitris - EW2B.3, HM2A.6, HW4A.1 Edwards, Matthew - HT3A.2 Chen, Diana - HT1A.4 Chen, Lei - JT5A.26 Chen, Shih-Hung - JT5A.6 Chen, Zaijun - MW4C.6 Chesnut, Kyle - HT1A.4 Chowdhury, Enam - HT2A.2, HT3A.7 Chvykov, Vladimir - HT3A.5, JT5A.20 Chyla, Michal - EM2B.4 Ciappina, Marcelo F.- HM4A.5, HW3A.2 Cilento, Federico - EW2B.5

Cilindre, Clara - JT5A.13 Cipiccia, Silvia - ET2B.4 Ciriolo, Anna Gabriella - HT1A.3, HW3A.5, HW3D.3 Clergerie, Alex - HM2A.3 Coddington, Ian - MW4C.1 Cole, Jason - ET2B.4 Collett, Oliver J.- MM2C.4 Colombelli, Raffaele - MM3C.2 Comby, Antoine - HM2A.2, HM2A.3, HW2A.5, HW3A.6 Constant, Eric - HW2A.5, HW3A.3 Cormier, Eric - HW4A.4, MT2C.4 Cossel, Kevin - MW4C.1 Cotzee, Riaan - MM4C.7 Couprie, Marie Emmanuelle - EW4B.5, EW4B, JT5A.4 Courjaud, Antoine - EW4B.6 Cousin, Seth - MT1C.7 Crespo, Helder - HW3D.2 Cristescu, Simona - MT3C.6 Cruz, Flavio - MW4C.5 Csontos, Janos - HW3D.2 Cucini, Riccardo - EW2B.5 Davoine, Xavier - JT4A.3 De Luisa, Aleksander - EW2B.5 Debayle, Arnaud - JT4A.3 Debray, Jerome - MT2C.1, MT2C.2, MT2C.5 Dechard, Jeremy - JT4A.3 Defossez, Florent - JT5A.19 Delagnes, Jean-Christophe M.- MT2C.4 Delahaye, Hugo - MM2C.6, MM2C.7 Delbos, Niels - ET1B.5 Della Casa, Pietro - MT1C.6 Della Torre, Alberto - MT2C.8 Demircan, Ayhan - HW3D.4 Descamps, Dominique - HM2A.3, HW2A.5 Deuzeman, Mart Johan - ET3B.4 Devetta, Michele - HT1A.3, HW3A.5, HW3D.3 Devi, Kavita - MW1C.2, MW2C.6 Dherbecourt, Jean-Baptiste - MM4C.3, MM4C.6, MM4C.7 d'Humières, Emmanuel - HM3A.6 Di Lucchio, Laura - HT2A.1 Di Pietro, Vittorio - HW4A.4 Dias, Carlos - ET1B.3 Diddams, Scott A.- MW4C.1, MW4C.5 Dierolf, Martin - EM2B.3, EM2B.5 Dietz, Thomas - HT1A.6 Ditmire, Todd - HW4A.2 Domingue, Scott - MT1C.7 Dorney, Kevin - HM2A.4 Dornmair, Irene - ET1B.5 Doroshenko, Maxim E.- JT5A.9 Dou, Chenxi - JT5A.26 Doualan, Jean-Louis - JT5A.12 Douillet, Denis - HW4A.7 Drag, Cyril - MM4C.6 Dudovich, Nirit - HM2A.1, HM2A.3 Dudutis, Juozas - EM3B.4 Dumergue, Mathieu - EW2B.3, HW4A.1 Dupraz, Kevin - HW4A.7 Durand, Magali M.- EW4B.6 Duval, Simon - MM2C.1 Ebrahim-Zadeh, Majid - JT5A.17, MM2C, MW1C.2, MW1C.5, MW1C.6, MW2C.5, MW2C.6 Eggl, Elena - EM2B.3 Eichhorn, Marc - MW2C.4 Eichler, Hans Joachim - JT5A.21 Eichner, Timo - ET1B.4, ET1B.5, HT2A.6 Eikema, Kjeld S.- JT4A.2 Ekinci, Yasin - ET3B.5 Ellis, Jennifer - HM2A.4 Emmenegger, Lukas - MT3C.3 Endo, Akira - EM2B.4 Ennser, Karin - JT5A.11

Eno, Taizo - MW3C.4 Erattupuzha, Sonia - HM4A.6 Erlandson, Alvin - HT1A.4 Ermolov, Alexey - MW1C.8 Ernotte, Guilmot - MT2C.4 Ertel, Dominik-Pascal - HT1A.2 Esarey, Eric - EM3B.1 Esashi, Yuka - ET2B.2 Eschen, Wilhelm - ET2B.5 Escoto, Esmerando - HW3D.2 Espes, Emil - ET2B.3 Esser, M.J. D.- MM2C.4 Etxano, Ugaitz E.- HT3A.8, MW1C.8 Ewing, Ken - MT2C.6 Fabre, Baptiste - HM2A.3 Faccialà, Davide - HW3A.5, HW3D.3 Faist, Jérôme - JT4A.5, MT1C.2 Falcoz, Franck - HW4A.7 Fan, Guangyu - HT1A.5 Fan, Tingting - HM2A.4 Fareed, Muhammad Ashiq - HM3A.5 Faria, Guilherme - ET1B.3 Farkas, Balázs - HW4A.1 Faure, Jerome - HM3A.3 Favero, Ivan - MM3C.6 Fedeli, Jean-Marc - MT2C.8 Feise, David - MT1C.6 feister, scott - HT2A.2 Felder, Ferdinand - MT3C.3 Feng, Chao - EW4B.3 Feng, Tianli - HW3D.4, HW3D.6 Fennel, Thomas - HW2A.3 Ferbonink, Guilherme - ET1B.3 Ferchaud, Clément - HW4A.4 Février, Sébastien - MM2C.6, MM2C.7 Fisch, Nathaniel - HT3A.2 Fischer, Jonathan - HT1A.2 Flemens, Noah - MW2C.7 Fomenkov, Igor - ET3B.1, EW1B Fondacaro, Andrea - EW2B.5 Forget, Nicolas - HW4A.4 Fortin, Vincent - MM2C.1 Fourmaux, Sylvain - HM3A.2 Francesca, Palombo - MT3C.8 Frantz, Jesse - MT2C.6 Frassetto, Fabio - EW2B.5, HM2A.2, HW2A.3 Frazer, Travis - ET2B.6 Fricke, Jörg - MT1C.6 Frigerio, Jacopo - MM3C.3, MM3C.4 Frische, Kyle - HT2A.2 Fu, Qiang - MW1C.3 Fu, Yuxi - HT3A.6 Fulop, Jozsef A.- EM3B.5, HM3A.4, HT3A.1, JT5A.29, JT5A.3 Furch, Federico J.- EW2B.2 Gacemi, Djamal - JT4A.5 Gadonas, Darius - HW4A.5, MW2C.2 Gaida, Christian - MW1C.7 Galloway, Benjamin - ET2B.2 Galvanauskas, Almantas - HT2A.4 Galvin, Thomas - HT1A.4 Gao, Qi - HT3A.3 Gaponov, Dmitry - MM2C.7 Gapontsev, Valentin - MM2C.3 Gardner, Dennis - ET2B.2, ET2B.6 Garvey, Terence - ET3B.5 Gattass, Rafael - MT2C.6 Gauthier, Jean-Christophe - MM2C.1 Gebhardt, Martin - MW1C.7 Geddes, Cameron G.- EM3B.1 Géneaux, Romain - HM2A.3 Gentry, Christian - HM2A.4

Georges, Patric - ET1B.6, HW3A.6

Gérard, Bruno - MM3C.6, MT2C.3

Gérard, Jean-Michel - MM3C.6

Gerrity, Michael - ET2B.2

Ghaith, Amin - EW4B.5 Giambruno, Fabio - JT5A.2 Giannessi, Luca - EM4B.1 Gibbon, Paul - HT2A.1 Gibson, Dan - MT2C.6 Giles, Carlos - ET1B.3 Ginolas, Arnim - MT1C.6 Ginzburg, Valdislav - HT2A.5 Giorgetta, Fabrizio - MW4C.1 Girdauskas, Valdas - EM3B.4 Glaw, Veronika - JT5A.21 Gleich, Bernhard - EM2B.3 Godard, Antoine - MM4C.3, MM4C.6, MM4C.7 Goede, Sebastian - HM4A.1 Gonzalez, Aura I.- ET1B.6, HW3A.6 Gopal, Ram - JT5A.1 Gorju, Guillaume - MM4C.7 Gotjen, Henry - MT2C.6 Gradl, Regine - EM2B.3 Granger, Geoffroy - MM2C.6, MM2C.7 Gras, Sally - MT3C.5 Graves, William - EM2B.2 Grebing, Christian - HT1A.6 Gregory, Chris - ET2B.4 Gremillet, Laurent - JT4A.3 Gresch, Tobias - MT1C.2 Grigorova, Teodora F.- HW1A.5, HW3D.7 Grillet, Christian - MT2C.8 Grisard, Arnaud - MT2C.3 Gruse, Jan-Niclas - ET2B.4 Gruson, Vincent - EW3B.3 Grychtol, Patrik - HM2A.4 Guenot, Diego - HM3A.3 Guggenmos, Alexander - HM2A.6 Guichard, Florent - ET1B.6, HW3A.6 Guillemet, Sébastien - JT5A.19 Günther, Benedikt - EM2B.3, EM2B.5 Guo, Ailin - HT3A.3 Guo, Feng - MT2C.1 Guo, Xin - MT1C.4, MT1C.5 Gustas, Dominykas - HM3A.3 H. Frosz, Michael - MW1C.8 Haefner, Constantin L.- HT1A.4, HW4A.2 Haessler, Stefan - HT2A.3 Häfner, Matthias - HT1A.6 Hallin, Emil - HM3A.2 Hållstedt, Julius - ET2B.3 Hamann, Stephan - MW4C.3 Hameed, Nishar - MT3C.5 Hammani, Kamal - MW4C.4 Han, Jhih-Yong - JT5A.8 Hanna, Marc - ET1B.6, HW3A.6 Hänsch, Theodor - MW4C.6 Hansson, Björn A.- ET2B.3 Hanus, Vaclav - HM4A.2, HM4A.4 Harada, Yoichi - HW3A.1 Haraguchi, Eisuke - HW3A.1 Harren, Frans - MT3C.6 Hartig, Carsten - EW1B.1 Hartmann, Jean-Michel - MT2C.8 Hebling, János - EM3B.5, HM3A.4, HT3A.1, JT5A.29, JT5A.3 Hein, Joachim - HT1A.7 Heinrich, Alexander-Cornelius - HT1A.2 Helml, Wolfram - HM2A.6 Henry, Didier - MM4C.6 Heo, Jaeuk - HM2A.7 Heraud, Philip - MT3C.5 Herbeaux, Christian - EW4B.5 Herman, Daniel - MW4C.1 Hernandez, Yves - JT5A.19 Hernandez-Charpak, Jorge N.- ET2B.6 Hernández-García, Carlos - HM2A.4 Hertz, Hans - ET2B Hettel, Bob - ET1B Heuermann, Tobias - MW1C.7 Hickstein, Daniel - HM2A.4, MW4C.5

Hideur, Ammar - MM2C.7 Higashiguchi, Takeshi - JT5A.5 Höck, Helge - HT1A.6 Hoekstra, Ronnie - ET3B.4, JT4A.2 Hoff, Dominik - HM2A.2 Hofmann, Luisa - HT2A.1 Høgstedt, Lasse - MM4C.5 Hommelhoff, Peter - EW3B.2 Hong, Kyung-Han - MW1C.4, MW2C.7 Horiguchi, Naoto - ET2B.2 Hornung, Marco - HT1A.7 Hsieh, Chia-Ying - JT5A.6 Hubert, Björn - ET1B.5 Hübner, Lars - ET1B.5 Hunt, Michael - MM3C.5 Huot, Laurent R.- MT1C.3 Ikemachi, Takuya - HW1A.2 Illmer, Johannes - EW3B.2 Imasaka, Kotaro - HW1A.3 Irani, Shler - HT3A.7 Isella, Giovanni - MM3C.3, MM3C.4 Ishii, Nobuhisa - HW1A.3 Ishikawa, Kenichi L. - HW1A.2, HW1A.3, HW1A.4, HW1A.6 Ishikawa, Tetsuya - EM4B Ishizuki, Hideki - ET1B.4, MW1C.1 Itatani, Jiro - HW1A.3 Ito, Hiromasa - MT1C.1, MT2C.2 lto, Yoshiyasu - EW1B.4 Ivakin, Stanislav - JT5A.24 Ivanova, Elena P.- MT3C.5 Jalas, Sören - ET1B.5, HT2A.6 Jargot, Gaëtan - HW3A.6 Jarosch, Sebastian - HW4A.4 Jauregui, Cesar - MW1C.7 Jelínková, Helena - JT5A.14, JT5A.9 Jiang, Bocheng - EW4B.3 Jiang, Dapeng - JT5A.14 Jiang, Lan - JT5A.18 Jobin, Frédéric - MM2C.1 Johnson, Peter - ET2B.2 Jojart, Peter - HT3A.5 Jolly, Spencer W.- ET1B.4, ET1B.5, HT2A.6 Jones, Alfred - HW2A.2 Jossent, Mathieu - MM2C.6, MM2C.7 Jud, Christoph - EM2B.3 Jullien, Aurélie - HT2A.3 Junaid, Saher - MM4C.4 Juodkazis, Saulius - MT3C.5 Kadlčák, Jiri - MM4C.7 Kaertner, Franz X.- EM2B, ET1B.4, MW1C.4, MW2C.7, MW3C.1 Kahaly, Subhendu - HM2A.5, HM3A.5 Kaji, Ťomohiro - HW1A.3 Kako, Eiji - ET3B.2 Kaksis, Edgar - HT1A.5 Kalashnikov, Mikhail - HT3A.5, JT5A.20 Kaluza, Malte - HT1A.7 Kami'nski, Jerzy - HM4A.3 Kanai, Tsuneto - HT1A.5, HT3A.8 Kaneshima, Keisuke - HW1A.3, HW3A.1 Kang, Jun - HT3A.3 Kangaparambil, Sarayoo - HM4A.2, HM4A.4 Kapteyn, Henry - ET2B.2, ET2B.6, HM2A.4, MT1C.7 Karl, Robert M.- ET2B.2, ET2B.6 Kato, Ryukou - ET3B.2 Katzir, Yiftach - ET2B.4 Kawata, Hiroshi - ET3B.2 Keller, Ursula - MW2C.1 Keppler, Sebastian - HT1A.7 Khamis, Mustafa A.- JT5A.11 Kharin, Vasily - EM2B.6 Khazanov, Efim A.- HT2A.5

Kieffer, Jean-Claude - HM3A.2 Kienberger, Reinhard - HM2A.6 Kiim, Woohong - MM3C.5 Killi, Aleksander - HT1A.6 Kim, Byunghoon - HM2A.7 Kim, Dong Eon - HM2A.7 Kim, Woohong - MT2C.6 Kinoshita, Hiroo - EW1B.3 Kippenberg, Tobias J.- MW3C.2 Kirchen, Manuel - ET1B.5, HT2A.6 Kirchner, Matthew - MT1C.7 Kirsche, Alexander - EW2B.4 Kischkat, Jan - JT5A.15 Kiss, Balint - HW4A.4 Kitzler, Markus - HM4A.2, HM4A.4, HM4A.6 Klas, Robert - ET2B.5, EW2B.4 Kleineberg, Ulf - HM2A.6 Kling, Matthias - HM4A.5, HT2A.1 Klingebiel, Sandro - HT1A.6 Klisnick, Annie - EW2B, JT4A.1 Knobloch, Joshua - ET2B.6 Knut, Ronny - HM2A.4 Kochetkov, Anton A.- HT2A.5 Koehler, Johannes R.- HW3D.5 Kolacz, Jakub - MT2C.6 Komm, Pavel - MM2C.2 Konyashkin, Alexey - JT5A.22, JT5A.25, JT5A.27 Konyushkin, Vasilii A.- JT5A.9 Kopić, Damir - EW2B.5 Körner, Jörg - HT1A.7 Korolkov, Andrei - JT5A.22 Koshiba, Yuya - JT5A.5 Kossatz, Martin - JT5A.21 Köttig, Felix - HW3D.5, MW1C.8 Kovács, Bálint - HM3A.4 Kovacs, Katalin - HW4A.1 Kovacs, Mate - HT2A.3 Kovalenko, Nikita V.- JT5A.25, JT5A.27 Kowligy, Abijith - MW4C.5 Kowzan, Grzegorz - MW4C.3 Koyama, Mio - MT2C.2 Kozak, Martin - EW3B.2 Krajewska, Katarzyna - HM4A.3 Krakowski, Michel - MM3C.6 Krasowska, Marta - MT3C.5 Krausz, Ferenc - HM2A.6, MW3C.5 Krogen, Peter - MW1C.4, MW2C.7 Kroh, Tobias - MW1C.4 Kubeček, Václav - JT5A.14 Kučinskas, Dainius - MW2C.2 Kuehn, Sergei - EW2B.3, HM2A.2, HW4A.1 Kung, Fred - MT2C.6 Kurilovich, Dmitry - ET3B.4, JT4A.2 Kuwata-Gonokami, Makoto - HW1A.2 Kuzikov, S - EM4B.5 Labbe, Christophe - JT5A.12 Laffaille, Pierre - MM3C.2 Lai, Po-Yen - JT5A.6 Lallier, Eric - MT2C.3 Landry, Olivier - MT1C.2 Landsman, Alexandra - HM4A.5 Lang, Klaus-Dieter - JT5A.21 Lang, Norbert - MT3C.2, MW4C.3 Langbehn, Bruno - HW2A.3 Larimian, Seyedreza - HM4A.2, HM4A.4, HM4A.6 Larroche, Olivier - JT4A.1 Larsson, Daniel H.- ET2B.3 Lassonde, Philippe - MT2C.4 Laurell, Fredrik - MT2C.5, MW2C.2 Lavenu, Loïc - ET1B.6, HW3A.6 Lavoute, Laure - MM2C.7

Légaré, François - HM2A.3, HT1A.5, MT2C.4 Legare, Katherine - HT1A.5 Leitenstorfer, Alfred - HT1A.2 Lemell, Christoph - HM4A.6 Leo, Giuseppe - MM3C.6, MW2C Leroux, Vincent - ET1B.4, ET1B.5, HT2A.6 Lewenstein, Maciej - HM4A.5, HW3A.2 L'Huillier, Anne - HW4A.1 Li, Ang - EW3B.2 Li, Changliang - EW4B.3 Li, Lianhe - MM3C.2 Li, Ruxin - EM3B.2 Li, Xiang - MT1C.4, MT1C.5 Liang, Houkun - MW2C.7 Liang, Sijing - MW1C.3 Liang, Xiao - HT3A.3 Lienau, Christoph - HW2A.4 Lifschitz, Agustin - HM3A.3 Liger-Belair, Gérard - JT5A.13 Likhachev, Mikhail - MM2C.7 Likhov, Vladislav - MM3C.7 Limpert, Jens - ET2B.5, EW2B.4, MW1C.7 Lind, Alex - MW4C.5 Linfield, Edmund - MM3C.2 Liu, A - EM4B.5 Liu, Chongyang - MT1C.4, MT1C.5 Liu, Jiansheng - EM3B.2 Liu, Kunlong - HW1A.7 Liu, Qiankun - MM3C.3, MM3C.4 Lloyd, David T.- HW2A.2 Looser, Herbert - MT3C.3 Lopes, Nelson - ET2B.4 Lopez-Martens, Rodrigo B.- HM3A.3, HT2A.3, HW3D.2 Lozano, Magali - HT2A.3 Lu, Dazhi - MT2C.5 Lundström, Ulf - ET2B.3 Luo, Saiyu - JT5A.12 Luther-Davies, Barry - MT2C.8 M, Krishna M.- JT5A.1 Ma, Pan - MT2C.8 Ma, Weiwei - JT5A.14 Macherius, Uwe - MT3C.2 Mackonis, Paulius P.- HT1A.1 Madden, Stephen - MT2C.8 Maes, Frédéric - MM2C.1 Mahncke, Sebastian - ET1B.5 Maier, Andreas R.- ET1B.4, ET1B.5, HT2A.6 Mairesse, Yann - HM2A.3, HW2A.5, HW3A Maisons, Gregory - MT3C.4 Maithani, Sanchi - MT3C.1 Maity, Abhijit - MT3C.1 Majchrzak, Paulina - HW2A.2 Major, Balazs - HW4A.1 Major, Kevin - MT2C.6 Mak, Ka Fai - MW3C.5 Makos, John - EW2B.3 Maksimenka, Raman - HW4A.4 Mancini, Giulia - ET2B.2, ET2B.6 Mancuso, Christopher - HM2A.4 Mandon, Julien - MT3C.6 Mangles, Stuart - ET2B.4 Mani, Aladin - MT3C.7 Marcouille, Olivier - EW4B.5 Marcus, Gilad - HM2A.6, MM2C.2 Mariani, Giacomo - HW3D.3 Maroutian, Thomas - MM3C.2 Marris-Morini, Delphine - MM3C.3, MM3C.4, MT2C Marteau, Fabrice - EW4B.5 Martens, Aurélien - HW4A.7 Martinez Vazquez, Rebeca - HW3A.5 Maslowski, Piotr - MW4C.3 Mason, Dan - HT1A.4 Masselink, Ted W.- JT5A.15 Mathonnière, Sylvain - JT5A.15 Matlis, Nicholas - ET1B.4

Leemans, Wim - EM3B.1

Matras, Guillaume - HT3A.8 Matsuoka, Yohei - JT5A.15 Maulini, Richard - MT1C.2 McNeur, Joshua - EW3B.2 Melkonian, Jean-Michel - MM4C.3, MM4C.6, MM4C.7 Meng, Lichun - MM4C.5 Meng, Lingjie - JT5A.26 Menoni, Carmen S.- ET2B.1, EW2B.2 Merdji, Hamed - JT4A.4 Messner, Philipp - ET1B.5, HT2A.6 Metzger, Thomas - HT1A.6 Mevel, Eric - HW3A.3 Michailovas, Andrejus - HW4A.5 Midorikawa, Katsumi - HT3A.6 Mikhailova, Julia - EM3B.3, HT3A.2 Miley, Galen - ET2B.2 Millot, Guy - MW4C.4 Milošević, Dejan - HM2A.4 Minamide, Hiroaki - MT2C.2, MW3C, MW3C.4 Miotti, Paolo - EW2B.5 Mirov, Mike - MM2C.3 Mirov, Sergey - MM2C.3, MT1C Mitchell, Arnan - MT2C.8 Miyajima, Tsukasa - ET3B.2 Mocci, Jacopo - HT1A.3 Mocek, Tomas - EM2B.4, MW1C.4 Möller, Thomas - HW2A.3 Monat, Christelle - MT2C.8 Moncorge, Richard - JT5A.12, MM3C Mondal, Sudipta - HM3A.5 Monoszlai, Balázs - HT3A.1 Monserud, Nils - HW2A.3 Morgner, Uwe - HW3D.2 Moriaux, Anne-Laure - JT5A.13 Moriguchi, Yoshikiyo - MW3C.4 Morikawa, Junko - MT3C.5 Morita, Ryosuke - JT5A.5 Morris, Daniel - MM2C.4 Morrison, John - HT2A.2 Moselund, Peter - MT1C.3 Moses, Jeffrey A.- MW2C.7 Moshammer, Robert - HM2A.2 Moskalev, Igor - MM2C.3 Moss, David J.- MT2C.8 Mouras, Rabah - MT3C.7 Müller, André - MT1C.6 Müller, Antoine - MT1C.2 Muradore, Riccardo - HT1A.3 Murnane, Margaret - ET2B.2, ET2B.6, HM2A.4 Murphy, Chris - ET2B.4 Muschet, Alexander A.- HM2A.6 Myers, Jason - MT2C.6 Naciri, Jawad - MT2C.6 Nadeem, Faisal - MT3C.6 Nader, Nima - MW4C.5 Nagano, Shigenori - MW3C.4 Nagisetty, Siva - EM2B.4 Nagl, Nathalie - MW3C.5 Nagy, Tamas - HT2A.3, HW3D, HW3D.2 Nagyillés, Balazs - HW4A.1 Nagymihály, Roland - HT3A.5 Nagyváradi, Anett - EM3B.5 Najmudin, Zulfikar - ET2B.4 Nakamura, Norio - ET3B.2 Nakladov, Andrey N.- JT5A.9 Nam, Chang Hee - HM3A.1 Nandy, Biplob - JT5A.17 Nanni, Emilio A.- EM4B.4 Nawata, Kouji - MW3C.4 Nayak, Arjun - EW2B.3 Ndiaye, Cheikh Fall - HW4A.7 Neely, David - ET2B.4 Nefedova, Victoria - EW2B.6, JT5A.2 Negel, Jan-Philipp - HT1A.6

Le Barillec, Titouan - HW4A.7

Le Marec, Andréa - JT4A.1

Lee, Bo Ram - HT2A.7

Le Pennec, Mathias - JT5A.2

Le Roux, Xavier - MM3C.3, MM3C.4

Negro, Matteo - HT1A.3, HW3A.5, HW3D.3 Nejdl, Jaroslav - EW2B.6, JT5A.2 Nemec, Michal - JT5A.9 Newbury, Nathan R.- MW4C.1 Neyra, Enrique - HW3A.2 Ng, Geok Ing - MT1C.4, MT1C.5 Nguyen, Hoang - HT1A.4 Nguyen, Vinh - MT2C.6 Nishimura, Kotaro - HT3A.6 Nisoli, Mauro - HM2A.2, HW2A.3 Noach, Salman - MM2C.2 Nome, Rene - ET1B.3 Novak, Ondrej - MW1C.4 Nuñez von Voigt, Pablo - HW2A.3 O'Donnell, Callum F.- MW1C.5 O'Keeffe, Kevin - HW2A.2 Okhrimchuk, Andrey G.- MM3C.7 Omote, Kazuhiko - EW1B.4 Orban, Chris - HT2A.2 Orfanos, John - EW2B.3 Orimo, Yuki - HW1A.4 Orobtchouk, Regis - MT2C.8 Ortmann, Lisa - HM4A.5 Osellame, Roberto - HW3A.5 Osiko, Vyacheslav V.- JT5A.9 Ostermayr, Tobias - HT2A.1 Osvay, Karoly - HT3A.5, HW4A.1, HW4A.4, JM5A.2, Ravi, Koustuban - ET1B.4 JT5A.20 Ota, Shogo - JT5A.5 Otendal, Mikael - ET2B.3 Ouillé, Marie - HT2A.3, HW3D.2 Ovcharenko, Yevheniy - HW2A.3 Ozaki, Tsuneyuki - HM3A.5 Pacholski, Alexandre - JT5A.2 Padhye, Anuja - MW1C.2 Pal, Mithun - MT3C.1 Palaferri, Daniele - JT4A.5 Pálfalvi, László - HT3A.1 Panaccione, Giancarlo - EW2B.5 Panyutin, Vladimir - MT2C.1 Papadichev, Vitaly - EW4B.2 Papp, Scott - MW4C.5 Paradis, Pascal - MM2C.1 Parillaud, Olivier - MM3C.6 Parmigiani, Fulvio - EW2B.5 Parriaux, Alexandre - MW4C.4 Parsa, Shahrzad - MW1C.6, MW2C.6 Parvitte, Bertrand - JT5A.13, JT5A.19, MT3C.4 Pašiškevičius, Valdas - MM4C.7, MW2C.2, MT2C.5, MW2C.3 Pattathil, Rajeev - ET2B.4 Paulus, Gerhard - HM2A.2, HM4A.2, HM4A.4 Payne, Daniel - EW2B.5 Pedersen, Christian - MM4C.1, MM4C.2, MM4C.4, MM4C.5, MT1C.3, MT3C.8 Peinaud, Yann - HW4A.7 Péjot, Clément - HW3A.3 Pelon, Jacques - MM4C.3 Peltz, Christian - HW2A.3 Pena, Alexandra - MT2C.5 Peng, L.-H. - JT5A.8 Peppers, Jeremy - MM2C.3 Pereira Lopes, Diogo - HW3A.5 Perez-Guaita, David - MT3C.5 Perez-Hernández, Jose - HM4A.5, HW3A.2 Peters, Sven - JT5A.15 Petit, Stéphane - HM2A.3, HW2A.5, MT2C.4 Petit, Yannick - MT2C.4 Petrov, Valentin - MT2C.1, MW2C.3 Petrulenas, Augustinas - HT1A.1 Pfeiffer, Franz - EM2B.3, EM2B.5, EW4B.1 Phillips, Christopher R.- MW2C.1 Picqué, Nathalie - MW4C.6 Pincelli, Tommaso - EW2B.5 Pinto, Tiago - JT4A.2 Pires, Hugo - MW1C.8

Pleau, Louis-Philippe - MM2C.1 Pogoda, Anastasiya - JT5A.24 Poletto, Luca - EW2B.5, HM2A.2, HW2A.3 Polónyi, Gyula - HT3A.1 Pons, Bernard - HM2A.3 Popmintchev, Tenio - HM2A.4 Porat, Gil - HM2A.3 Porter, Christina - ET2B.2, ET2B.6 Prabhash, Prasannan Geetha - HW3A.5 Pradhan, Manik - MT3C.1 Prinz, Stefan - HT1A.6 Pronin, Oleg - MW3C.5 Pugzlys, Audrius - HT1A.5 Pupeza, Ioachim - MW1C.7 Pusala, Aditya - HW3A.5, HW3D.3 Puth, Alexander - MW4C.3 Qiao, Zhongliang - MT1C.4, MT1C.5 Qu, Kenan - HT3A.2 Quéré, Fabien - EW3B.3, HW3D.1 Quintard, Ludovic - HW3A.3 Quintavalla, Martino - HT1A.3 Raabe, Nils - HW3D.4, HW3D.6 Raciukaitis, Gediminas - EM3B.4 Ramirez, Joan Manel - MM3C.3, MM3C.4 Ravaro, Marco - MM3C.6 Raybaut, Myriam - MM4C.3, MM4C.6, MM4C.7 Reduzzi, Maurizio - HM2A.2 Rehak, Margareta - HT1A.4 Ressel, Peter - MT1C.6 Reyne, Stephane - JT5A.2 Rhonehouse, Dan - MT2C.6 Richardson, David - MW1C.3 Richter, Roland A.- MW4C.2 Rigaud, Philippe - HW3A.6 Rivas, Daniel E.- HM2A.6 Rivkin, Leonid - ET3B.5 Rizzuto, Carlo - JM5A.1 Robichaud, Louis-Rafael - MM2C.1 Rocca, Jorge J.- EM3B, ET1B.2 Rocipon, Hervé - HW4A.7 Rockwood, Alex - ET1B.2 Rodin, Aleksej - HT1A.1 Rodrigo, Peter John - MM4C.1, MM4C.4, MM4C.5 Romero, Rosa - HW3D.2 Röpcke, Jürgen - MT3C.2, MW4C.3 Roquemore, William - HT2A.2 Roshchupkin, Dmitry - MT2C.4 Roso, Luis - HM4A.5, HW3A.2 Rossi, Giorgio - EW2B.5 Rosso, Paul - HT1A.4 Rothhardt, Jan - ET2B.5, EW2B.4 Rousseau, Jean-Philippe - HT2A.3 Roussel, Eleonore - EW1B.2 Rouzée, Arnaud - HW2A.3 Ruchon, Theirry - ET1B.6, EW3B.3, HM2A.3, HW3A.6 Rudawski, Piotr - HW4A.1 Ruhl, Hartmut - HW1A Ruijter, Marcel - EM2B.6 Rupp, Daniela - HW2A.3 Rus, Bedrich - HW4A.2 Rusby, Dean - ET2B.4 Russell, Philip S.- HW3D.5, MW1C.8 Rustige, Pascal - HW3D.6 Ryabushkin, Oleg - JT5A.22, JT5A.25, JT5A.27 Rykovanov, Sergey - EM2B.6 Saci, Abdelhak - EW4B.6 Sakai, Hiroshi - ET3B.2 Sakaue, Kazuyuki - JT5A.5

Salganskii, Mikhail - MM2C.7 Salieres, Pascal L.- EW2B.1, EW3B.3 Sánchez, Daniel - HT3A.8 Sander, Katharina - HW2A.3 Sanghera, Jas - MM3C.5, MT2C.6

Sano, Yuji - EM4B.3 Sansone, Giuseppe - HM2A.2, HT2A, HW4A.1 Sato, Takeshi - HW1A.2, HW1A.4, HW1A.6 Sauppe, Mario - HW2A.3 Savilov, A - EM4B.5 Scalari, Giacomo - MW3C.3 Schaffers, Kathleen - HT1A.4 Schaller, Matthias - MT3C.2 Scharun, Michael - HT1A.6 Scheers, Joris - ET3B.4, JT4A.2 Schell, Felix - EW2B.2 Schellhorn, Martin - MW2C.4 Schmidt, Bruno - HT1A.5 Schnepp, Matthias - ET1B.5, HT2A.6 Schoffler, Markus - HM4A.2, HM4A.4 Schönenberger, Norbert - EW3B.2 Schötz, Johannes - HM4A.5 Schreiber, Jörg - HT2A.1 Schröder, Hartmut - HM2A.6 Schroeder, Carl - EM3B.1 Schroeter, Claus Dieter - HM2A.2 Schultze, Marcel - HT1A.6 Schulz, Claus P.- EW2B.2 Schulz, Stefan S.- MT3C.2 Schulze, Dominik - HM4A.7 Schülzgen, Axel - MW1C.7 Schunemann, Peter G.- HT3A.8, MT2C.7, MW1C.2, MW1C.5, MW1C.6, MW2C.5, MW4C.5 Schupp, Ruben - ET3B.4, JT4A.2 Schütte, Bernd - HW2A.3 Scisciò, Massimiliano - HM3A.6, JT5A.23 Sebdaoui, Mourad - EW4B.5 Segonds, Patricia - MT2C.1, MT2C.2, MT2C.4, MT2C.5 Seidel, Marcus - MW3C.5 Sekikawa, Taro - HW3A.1 Semtsiv, Mykhaylo P.- JT5A.15 Sergachev, Ilia - MT1C.2 Sevilla, Ruben - JT5A.11 Sevillano, Pierre - EW4B.6 Shanblatt, Elisabeth - ET2B.2, ET2B.6 Sharma, Ashutos - EM3B.5, JT5A.3 Shaw, Brandon - MM3C.5, MT2C.6 Shebarshina, Irina V.- JT5A.25 Shebarsina, Irina - JT5A.27 Sheintop, Uzziel - MM2C.2 Shepherd, David - MW1C.3 Shevyrdyaeva, Galina - MW2C.3 Shiloh, Roy - EW3B.2 Shinohara, Yasushi - HW1A.2, HW1A.3 Shirozhan, Mojtaba - HM2A.5 Shlyaptsev, Vyacheslav - ET1B.2 Siders, Craig - HT1A.4 Silfies, Myles - MW4C.5 Silien, Christophe - MT3C.7 Simon, Peter - HT2A.3 Simon-Boisson, Christophe - HT3A.8 Sinobad, Milan - MT2C.8 Sirtori, Carlo - JT4A.5, MM3C.1 Sistrunk, Emily F.- HT1A.4, HW4A Skantzakis, Emmanuel - EW2B.3 Smayev, Michael - MM3C.7 Smith, Donald - ET3B Smith, Joseph - HT2A.2 Smolski, Viktor - MM2C.3 Smrz, Martin - EM2B.4 Sofiienko, Andrii - ET2B.3 Solyanik, Maria - EW4B.4 Sorokin, Evgeni - MM2C.5, MM3C.7 Sorokina, Irina T.- MM2C.5, MM3C.7, MM4C, MT3C, MW4C.2 Soulard, Rémi - JT5A.12 Soulimane, Tewfik - MT3C.7 Spanier, Annabelle - HW2A.3

Spielmann, Christian - ET2B.5 Spillmann, Christopher - MT2C.6 Spindler, Gerhard - MW2C.4 Spinka, Thomas - HT1A.4 Springate, Emma - HW2A.2 Stagira, Salvatore - HT1A.3, HW3A.5, HW3D.3 Stanislauskas, Tomas - HW4A.5, MW2C.2 Stankevic, Valdemar - EM3B.4 Stark, Sebastian - HT1A.6 Staudte, André - HM4A.4 Steinle, Tobias - MW1C.8 Steinmeyer, Gunter - HT3A, HW3D.2, HW3D.4, HW3D.6 Sterzi, Andrea - EW2B.5 Stodolna, Aneta - JT4A.2 Stolzenburg, Christian - HT1A.6 Stone, Nick - MT3C.8 Streeter, Matthew - ET2B.4 Streun, Andreas - ET3B.5 Stutzki, Fabian - MW1C.7 Su, Liangbi - JT5A.14 Su, Xiaoxing - JT5A.18 Sublemontier, Olivier - HW3A.6 Suchowski, Haim - MW2C.7 Suda, Akira - HT3A.6 Suddapalli, Chaitanya Kumar - JT5A.17, MW1C.5, MW1C.6, MW2C.5, MW2C.6 Sudmeyer, Thomas - HW3A.4 Šulc, Jan - JT5A.9, JT5A.14 Sumpf, Bernd - MT1C.6 Sun, Meizhi - HT3A.3 Sun, Shuhui - HM3A.5 Sundman, Björn - ET2B.3 Suresh, Mallika I.- HW3D.5 Šušnjar, Peter - EW2B.2 Sutter, Dirk - HT1A.6, MW3C.5 Svejkar, Richard - JT5A.14, JT5A.9 Symes, Daniel - ET2B.4 Tadesse, Getnet K.- ET2B.5 Taïeb, Richard - HM2A.3 Taira, Takunori - ET1B.4, MW1C.1 Tajalli, Ayhan - HW3D.2 Takahashi, Eiji J.- HT1A, HT3A.6 Takashi Notake, Takashi - MT2C.2 Takeuchi, Kengo - HW1A.3 Takida, Yuma - MW3C.4 Takman, Per - ET2B.3 Talisa, Noah - HT3A.7 Tallents, Greg - ET1B.7 Tamer, Issa - HT1A.7 Tancogne-Dejean, Nicolas - HW1A.1 Tani, Francesco - HW3D.5, MW1C.8 Tanksalvala, Michael - ET2B.2, ET2B.6 Tappy, Luc - MT3C.3 Tasca, Kelin - ET1B.3 Tavakoli, Keihan - EW4B.5 Tawfieq, Mahmoud - MT1C.6 Teisset, Catherine - HT1A.6 Thapa, Rajesh - MT2C.6 Thévenet, Maxence - HT2A.3 Thiré, Nicolas - HW4A.4 Thornton, Chris - ET2B.4, HW2A.2 Tibai, Zoltan - EM3B.5, HM3A.4, JT5A.3 Tidemand-Lichtenberg, Peter - MM4C.1, MM4C.2, MM4C.4, MM4C.5, MT1C.3, MT3C.8 Tilmont, Manuel - EW4B.5 Timmers, Henry - MW4C.5 Tobin, Mark J.- MT3C.5 Todorov, Yanko - JT4A.5 Tofail, Syed A.- MT3C.7 Tokizane, Yu - MW3C.4 Tokodi, Levente - HT3A.1 Tolstik, Nikolai - MM2C.5, MM3C.7, MW4C.2 Tomko, Ján - JT5A.15 Tomkus, Vidmantas - EM3B.4 Torchia, Gustavo - HW3A.2 Torretti, Francesco - ET3B.4, JT4A.2

Tosa, Valer - HW4A.1 Toth, Csaba - EM3B.1 Toth, Gyorgy - EM3B.5, HT3A.1, JT5A.29, JT5A.3 Tóth, Szabolcs - JT5A.20 Trabattoni, Andrea - HW2A.3 Trabold, Barbara M.- HW3D.5 Tränkle, Günther - MT1C.6 Travers, John C.- HW1A.5, HW3D.7 Trunk, Maximilian - ET1B.5 Truong, Vi Khanh - MT3C.5 Tsai, Hai-En - EM3B.1 Tschernajew, Maxim - ET2B.5, EW2B.4 Tseng, Yu-Pei - MM4C.2, MT3C.8 Tuitje, Frederik - ET2B.5 Tünnermann, Andreas - ET2B.5, EW2B.4, JM1A.3, MW1C.7 Tuohimaa, Tomi - ET2B.3 Turkot, Britt - JM1A.2 Turnár, Szabolcs - HM3A.4 Tuzson, Bela - MT3C.3 Tzallas, Paraskevas - EW2B.3, HM2A.6, HW2A.1, HW4A.1 Ubachs, Wim - ET3B.4, JT4A.2 Uhlig, Benjamin - MT3C.2 Ullrich, Joachim - HM2A.2 Umemori, Kensei - ET3B.2 Underwood, Chris - ET2B.4 Unferdorben, Márta - HM3A.4 Urakawa, Junji - JT5A.5 Ursescu, Daniel - HW4A.3, JM5A.3 Vabek, Jan - HW3A.3 Vakarin, Vladyslav - MM3C.3, MM3C.4 Valentin, Constance - HW3A.3 Valléau, Mathiéu - EW4B.5 Vallee, Real - MM2C.1 Vallières, Simon - HM3A.6 Vallon, Raphael - JT5A.13, JT5A.19, MT3C.4 van Helden, Jean-Pierre H.- MT3C.2, MW4C.3 van Tilborg, Jeroen - EM3B.1 Varanavicius, Arunas - HW4A.5, MW2C.2 Variola, Alessandro - HW4A.7 . Varjú, Katalin - HW4A.1 Vasanelli, Angela - JT4A.5, MW4C Vasilyev, Sergey - MM2C.3 Vay, Jean-Luc - EM3B.1 Veisz, Laszlo - HM2A.6, HM3A, HT2A.1 Veitas, Gediminas - HW4A.5 Veltri, Simona - HM3A.6, JT5A.23 Vernier, Aline - HM3A.3, HT2A.3, HW3D.2 Versolato, Oscar - ET3B.4, JT4A.2 Vescovi, Rafael - ET1B.3 Veteran, Jose - EW4B.5 Videla, Fabian - HW3A.2 Vikharev, A. - EM4B.5 Viotti, Anne-Lise - MW2C.2 Vivien, Laurent - MM3C.3, MM3C.4 Vladimir, Pervak - HM2A.6, HT1A.5, MW3C.5 Vongsvivut, Jitraporn - MT3C.5 Vozzi, Caterina - HM2A, HT1A.3, HW3A.5, HW3D.3 Vrakking, Marc J.- EW2B.2, HW2A.3 Walker, Paul A. - ET1B.5 Walter, Guillaume - MM4C.6 Wandt, Christoph - HT1A.6 Wang, Hong - MT1C.4, MT1C.5 Wang, Junli - JT5A.26 Wang, Shoujun - ET1B.2 Wang, Wanjun - MT1C.4, MT1C.5 Wang, Wentao - EM3B.2 Wang, Xiaofan - EW4B.3 Wang, Yong - ET1B.2 Washio, Masakazu - JT5A.5 Watson, Gregory S.- MT3C.5

Wei, Zhiyi - JT5A.26 Weidman, Matthiew - HM2A.6 Werle, Christian - ET1B.5, HT2A.6 Werner, Kevin - HT3A.7 Wilson, Sarah A.- ET1B.7 Winkler, Paul - ET1B.5, HT2A.6 Winters, David G.- MT1C.7 Witte, Stefan - JT4A.2 Witting, Tobias - EW2B.2, HW3D.4 Wolf, Adam - JT5A.2 Wood, Bayden R.- MT3C.5 Wood, Jonathan - ET2B.4 Wrulich, Albin - ET3B.5 Wu, Qinghui - JT5A.14 Wyatt, Adam S.- HW2A.2 Xie, Xinglong - HT3A.3 Xie, Xinhua - HM4A.2, HM4A.4, HM4A.6 Xu, Huying - JT5A.12 Xu, Lin - MW1C.3 Xu, Zhizhan - EM3B.2 Xue, Bing - HT3A.6 Yan, Haiting - JT5A.26 Yang, Changxi - JT5A.16 Yang, Qingwei - HT3A.3 Yang, Shunhua - HT3A.3 Ycas, Gabriel - MW4C.1, MW4C.5 Ye, Hanyu - JT5A.17, MW2C.5 Yembadi, Rakesh K.- JT5A.1 Yousefi, Peyman - EW3B.2 Yumoto, Junji - HW1A.2 Zaouter, Yoann - ET1B.6, HW3A.6 Zawilski, Kevin - HT3A.8, MT2C.7, MW1C.5, MW1C.6 Zeninari, Virginie - JT5A.13, JT5A.19, MT3C.4 Zeraouli, G - HM4A.5 Zhang, Jinwei - MW3C.5 Zhang, Peixiong - JT5A.10 Zhang, Xiaoshi - ET2B.2 Zhao, Zhentang - EW3B, EW4B.3 Zholents, Alexander - EW3B.1 Zhu, Haidong - HT3A.3 Zhu, Jianqiang - HT3A.3 Zhu, Ping - HT3A.3 Zimmermann, Henrik - MT3C.2 Zimmermann, Julian - HW2A.3 Zimmermann, Sven - MT3C.2 Zomer, Fabian - HW4A.7 Zuba, Viktor - HT3A.5 Zukauskas, Andrius - MT2C.5, MW2C.2, MW2C.3 Zusin, Dmitriy - HM2A.4

Wei, Qiliang - HM3A.5

Watson, Jolanta A.- MT3C.5

Waxman, Eleanor - MW4C.1 Wei, Junxiong - MW2C.5

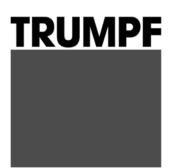
Notes	

Notes	

Notes	

Sponsored and Managed by:

Corporate Sponsors:


THE ADVANCED MATERIALS MANUFACTURER ®

Platinum Sponsors

