

Freeform Optics Incubator 30 OCTOBER - 1 NOVEMBER 2011

OSA Headquarters • Washington, D.C., USA

Hosted by: Pablo Benitez, Universidad Politecnica de Madrid, Spain and Kevin Thompson, Synopsys, Inc., USA

Highlights of Presentations Part 3 of 3 Day 2, Morning compiled by Kevin Thompson, PhD Synopsys, Inc.

8:40	Opening Remarks: Is This History in the Making?		
	Kevin Thompson, Synopsys, Inc., USA		
9:00	Freeform Surfaces for Imaging Systems		
	Norbert Kerwien, Carl Zeiss Corp., Germany		
9:25	Current Techniques for Diamond Machining Freeform Optics		
	Gregg Davis, II-VI, Inc., USA		
9:50	Realizing an Optical System with Phi-Polynomial Freeform Surfaces		
	Kyle Fuerschbach, University of Rochester, USA		
11:00	Specifying ShapeWhat Could We Hope For and Can It Be Achieved		
	Gregory Forbes, QED Technologies Inc., Australia		
11:25	Smooth Radial Basis Functions Viewed as a Generalization of Multivariate Polynomials		
	Gregory Fasshauer, Illinois Institute of Technology, USA		
11:50	Moving from Phi-Polynomial to Multi-centric Radial Basis Functions		
	Aaron Bauer, University of Rochester, USA		
13:15	SMS 3D: A Freeform Optics Design Method		
	Juan-Carlos Miñano, LPI, Universidad Politecnica de Madrid, Spain		
13:40	Geometric Methods of Design of Freeform Surfaces with Prescribed Optical Properties		
	Vladimir Oliker, Emory University, USA		
14:05	A Starting Point Approach for Nonimaging Reflector Design		
	Cristina Canavesi, University of Rochester, USA		
15:10	40 years of Freeform Surfaces		
	Daniel Bajuk, ZYGO EPO, USA		
15:35	Freeform Surfaces Have Aberration Fields Too		
	Kevin Thompson, Synopsys, Inc., USA		
16:00	Two Freeform Mirror Designs with SMS 3D		
	Lin Wang, Universidad Politecnica de Madrid, Spain		
17:30	BIG BIRD		
	Phil Pressel, Quartus Engineering Company, USA		
9:00	The Art of Tailoring Freeform Surfaces for Illumination		
	William Cassarly, Synopsys, Inc., USA		
9:25	Freeform Optics at OSRAM: What We Have, What We Miss, What We Need		
	Julius Muschaweck, OSRAM GmbH, Germany		
9:50	Freeform Optics for a Linear Field of View		
	Fabian Duerr, Vrije Universiteit Brussel, Belgium		
11:00	Nonimaging Freeform Optics Applications at LPI		
	Pablo Benitez, Universidad Politecnica de Madrid, Spain		
11:25	F-RXI Photovoltaic Concentrator: A High Performance SMS-3D Freeform Köhler Design		
	Marina Buljan, Universidad Politecnica de Madrid, Spain		
11:35	Augmented Reality Displays a Playground for Freeform Surfaces		
	Jannick Rolland, University of Rochester, USA		

Day 2 Morning Session

- 9:00 **The Art of Tailoring Freeform Surfaces for Illumination** William Cassarly, *Synopsys, Inc., USA*
- 9:25 Freeform Optics at OSRAM: What We Have, What We Miss, What We Need Julius Muschaweck, OSRAM GmbH, Germany
- 9:50 **Freeform Optics for a Linear Field of View** Fabian Duerr, *Vrije Universiteit Brussel, Belgium*
- 11:00 **Nonimaging Freeform Optics Applications at LPI** Pablo Benitez, *Universidad Politecnica de Madrid, Spain*
- 11:25 F-RXI Photovoltaic Concentrator: A High Performance SMS-3D Freeform Köhler Design Marina Buljan, *Universidad Politecnica de Madrid, Spain*
- 11:35 Augmented Reality Displays a Playground for Freeform Surfaces Jannick Rolland, *University of Rochester, USA*

The Art of Tailoring Freeform Surfaces for Illumination Part 2 – The State of the Art

Freeform Incubator Nov. 1, 2011

Dr. Bill Cassarly Optical Research Associates williamc@synopsys.com www.opticalres.com

Optimization

- Optimization is the ability to automatically refine the performance of a system based upon a user specified performance criteria
- Three primary aspects of optimization
 - Efficient Optimization Algorithm
 - Smart Model Parameterization
 - Robust Merit Function

Surface Parameterization

NURBS curve and NURBS surface

- Surfaces can be described using Equation:
 - e.g., XYPolynomial, Zernike, Asphere, etc
- Tailoring and SMS:
 - Compute prescribed surface(s) by numerical integration.
 - Often based upon a source to output mapping
 - Surface commonly represented using NURBS
- Equation that best fits NURBS sometimes used

Optimization Variables

- Equation Parameters
 - e.g., radius of curvature, XY polynomial coefficients
- Source to Output Mapping parameters

 e.g., Width of target, desired Illuminance

Merit Function

- For many applications, a weighted Merit Function can be used for optimization.
- Weights are used by the designer to help balance tradeoffs.
- Merit functions are often based on ray aiming.
- In illumination, binned Monte Carlo simulation results are often used.

Basic Equation For Merit Function

- $MF = \sum W_g \sum W_i^2 (V_i T_i)^2$
 - $W_g =$ Weight of g^{th} MF Group
 - W_i = Weight of ith MF item in Group g
 - V_i = Current Value of ith MF item
 - T_i = Target of ith MF item

Color Smoothing, Mixing Rod example

- Illumination simulation often need accurate color estimates
- Special smoothing algorithms can be used to preserve edges
 - Smoothing not performed over edge boundaries
 - ~1000 Rays per bin

Without Smoothing

Without Edge Preservation

With Smoothing Int. Width: 5 bins With Edge Preservation

> Synopsys® Predictable Success

Multiple designs can produce the same output

Starting Point is critical

- There are multiple solutions to illumination "beam pattern" design problems.
 - Monotonic solutions are stable
 - Hybrid solutions require slope discontinuities that can require a complex surface parameterization
- Most optimization setups "allow" hybrid solutions to occur, but rarely have the right variables to find an "ideal" hybrid solution.

Freeform Lenses

7

 Freeform lenses may not be monotonic in Z or Y

Freeform

- Freeform algorithms generally specify the number of computed points.
- Care must be taken to ensure that the resolution of the result is sufficient

 $imes_{ ext{[-0.46374 2.4834 C}}$

Design: 16X16 Evaluation: 16X16 Design: 16X16 Evaluation: 80X80

© Synopsys 2012

Aimed Rim Rays + Central Flux Tubes: Works for Asymmetric Source and/or Target

Predictable Success

© Synopsys 2012

Illumination software can be used with commercial CAD software

Before Optimization

- Construction parameters in CAD software can be used as variables in illumination software.
- Two common approaches:
 - Direct link/integration with the CAD software
 - Use of data exchange files
 - Step, IGES, SAT, etc

After Optimization

Conclusions

- Illumination Optimization is routine
 - Current ray trace speed allows use of Monte Carlo simulations
 - Production designs require balancing the tradeoffs
- Choosing effective variables is important
 - Direct surface computation algorithms provide a means to do this that is intuitive to a user.
 - 'neat' variables
- Specialized optimization algorithms can be used for some design problems.
- Direct freeform surface algorithms can be integrated with commercial software.

Freeform optics at OSRAM

OSA Freeform Optics Incubator Washington, D.C. Nov. 1, 2011 J. Muschaweck

"WHAT WE NEED THAT WE DO NOT HAVE"

Known methods: Wavefront matching / Cartesian ovals

- Given optical surfaces match resulting pairs of wavefronts
- Levi-Civita: For any given pair of wavefronts, there is an optical freeform surface (Cartesian Oval) which matches them.
- For both refraction and reflection
- Commercial software implementation: ?

OSA Freeform Optics Incubator Meeting | Nov. 1, 2011 | R&D EU-R | Julius Muschaweck

Known methods: "Simple" 2D tailoring

- "Cartesian oval" software in 2D: ray fan to ray fan
- Desired intensity / illuminance from rotationally symmetric wavefront (edge ray tailoring)
- Commercial software implementation: ?

Known methods: Single surface 3D tailoring for point sources

Well known method for > 10 years

H. Ries, J. Muschaweck and A. Timinger, "New Methods of Reflector Design", **Optics & Photonics News August 2001**

Implemented by various groups (OEC, Fraunhofer Inst., Univ. Karlsruhe, ...)

Commercial implementations: rare

"Elephant" designed using software from Fraunhofer ITWM

R&D EU-R | Julius Muschaweck

Known Design/Optimization Methods: 2D / 3D SMS (Simultaneous Multiple Surface)

- Well known method by LPI / Univ. Politecnica de Madrid
- Based on Levi-Civita style matching of multiple pairs of wavefronts
- Commercial software implementation:
 None

Missing methods:

Double surface 3D tailoring for point sources

- Single surface 3D tailoring: Full control over illuminance
- Double surface 3D tailoring: Full control over illuminance + 1
 - Color correction?
 - Source intensity incident on 2nd surface?
 - Illuminance on two target planes ("homogeneity with depth of field")?

Missing methods:

"Rigorous" 3D tailoring for extended sources

- Point source approximations fail sometimes
- "Fully flashed apertures" in etendue limited systems
 - Condensers for projection
 - Automotive headlamps
 - Wall washing / cove lights
- "Considerably flashed apertures" for "Large source" systems
 - Mobile flash
 - Single LED based streetlights

Conclusion

- Freeform surfaces for illumination promise high potential
 - Known for considerable time
 - Don't live up to this promise (yet)
- Existing design methods:
 - Few commercially available implementations
 - Some are complex / hard to use
 - "Solutions looking for a problem"? To some extent, yes
- Missing design methods:
 - For many real world problems (e.g. large sources)
- We are just starting ...

Freeform optics for a linear field of view:1. tracking integration in concentrating photovoltaics2. analytical segmented lens design

Fabian Duerr, Pablo Benítez, Juan C. Miñano, Youri Meuret and Hugo Thienpont

Chosen trade-off:

tracking integration on polar aligned single axis tracker

Why polar axis tracking?

- Demonstrate HCPV on single axis trackers (>500x concentration)
- Relatively high yearly insolation (almost comparable with dual axis tracking)
- Minimal aperture angle of ±24° for single axis tracking

System design

- Two laterally moving optics (no vertical movements for the moment)
- Rotational symmetric lens design based on extended SMS2D algorithm [1]

F. Duerr, Y. Meuret, and H. Thienpont, "Tracking integration in concentrating photovoltaics using laterally moving optics," Optics Express 19, A207-A218 (2011)

Rotational symmetric vs. freeform optics design

<u>Rotational symmetric</u> <u>design</u>

- >500x concentration over ±24° angular range
- Need for squared lens apertures and solar cells
 - L> Concentration ratio drops

] F. Duerr, P. Benítez; J.C. Miñano, Y. Meuret, and H. Thienpont, "Integrating tracking in concentrating photovoltaics using non-rotational symmetric optics," Proc.of SPIE, Vol. 8124 (2011)

Segmented lens design in two dimensions

Can we do better for wide FOV and/or clearly separated optical surfaces?

 Thick lens: different incident directions use different portions of the lens (like a field flattener lens or an aperture stop in imaging optics)

Coupling of three parallel ray sets

- Fermat's principle leads to set of functional differential equations
- Transformation to algebraic (linear) system of equations
 L> General solution for Taylor series coefficients
- Solution is fully described by two variables only: directional vectors at convergent points (indicated)
- Solutions range from meniscus to biconvex lens shapes
 L> 15th order Taylor polynomials for lens profiles (To be submitted soon)

Finally ... first three dimensional solution

3D coupling of three parallel ray sets

- Mathematical framework in analogy to 2D case
- Transformation to algebraic (linear) system of equations
 L> General solution for 2D Taylor series coefficients
- As before, solution is fully described by two variables only: directional vectors at convergent points

Nonimaging Freeform Optics Applications at LPI

Pablo Benítez, Juan C. Miñano

LPI, USA Universidad Politécnica de Madrid, Spain

Pablo Benitez OSA Freeform Incubator Meeting, Washington D.C., 2011

LPI freeform technologies

Anna The Anna

Low beam headlamp specs

X-beam headlamp

	Conventional	SMS 3D
Aperture	≈140 x 140 mm ²	\approx 80 x 80 mm ²
Flux on the road	350-680 lm	>700 lm
Efficiency	30%-55%	>60%

Pablo Benitez OSA Freeform Incubator Meeting, Washington D.C., 2011

3D laser scans profilometry

<u>N2/Ismlian</u>hii)

12/22

Freeform RXI-Köhler headlamp

Freeform RXI-Köhler headlamp

Pablo Benitez OSA Freeform Incubator Meeting, Washington D.C., 2011

Etendue-squeezing condenser

Metal-less TIR-RXI

Statement of the problem

O BAsta finantini)

Color Mixing

M2/Infilmentin

Color Temperature & dimming

Prototype

Pablo Benitez OSA Freeform Incubator Meeting, Washington D.C., 2011

<u>Allan finan in</u> P

• Measured maximum intensity 22 cd/lm (29 cd/lm simulated)

J. Maniferration

Why Kölher PV concentrators?

The FK concentrator

P. Benítez, J.C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, M. Hernández, Optics Express, Vol. 18, Issue S1 (Energy Express), April 2010

Pablo Benitez OSA Freeform Incubator Meeting, Washington D.C., 2011

Man Man Marken (Marking)

Fresnel LPI-Köhler SOE

International patents pending

Pablo Benitez OSA Freeform Incubator Meeting, Washington D.C., 2011

<u>ORA (Manifinan Ani</u>)

LPI FK concentrator: acceptance angle

* Measured results under DNI = 975 W/m²

LPI FK concentrator: cell irradiance uniformity

Comparison

Summary

- LPI has proprietary tools for freeform optics design, including SMS 3D and freeform Köhler integrators
- LPI is actively developing products in automotive, SSL and CPV
- Freeform imaging development in progress, in collaboration with UPM

Pablo Benitez OSA Freeform Incubator Meeting, Washington D.C., 2011

O. Manificantini >

F-RXI Photovoltaic Concentrator: a high performance SMS-3D freeform Köhler design

M. Buljan¹, P. Benítez^{1,2}, R. Mohedano², J. C. Miñano^{1,2}

¹Universidad Politécnica de Madrid (UPM), CeDInt, Spain

²LPI-LLC, USA

- New degrees of freedom to the design: A single optical element can perform multiple functions.
- Köhler integration as one of the additional surface functions in order to guarantee superior performance of 3J cells and systems: achromatic, homogeneous and square irradiance distribution with high concentration, high efficiency and wide acceptance angle.
- The <u>SMS 3D</u> design method of Nonimaging Optics is the most advanced method to design freeforms.

RXI 2D concept

*US patent 6,639,733

HCPV concentrator example: 4-fold F-RXI Köhler

M Bulian, P Benitez, R Mohedano, J C Miñano, "Improving performances of Fresnel CPV system: Fresnel-RXI Kohler concentrator, FU-PVSEC, Valencia(2010)

Merit function: CAP

M Bulian, P Benitez, R Mohedano, J C Miñano, "Improving performances of Fresnel CPV system: Fresnel-RXI Kohler concentrator, FU-PVSEC, Valencia(2010)

Advanced features: RXI + confining cavity

- Drop $\frac{1}{2}$ C_q + Light confinement with external cavity.
- Demonstrated 6% relative increase of light absorbed by cell (recovered by external confinement cavity).
- More dense grid-lines possible
 - Joule losses minimized: lower R_s
 - Higher concentrations.

M Bulian, P Benitez, R Mohedano, J C Miñano, "Improving performances of Fresnel CPV system: Fresnel-RXI Kohler concentrator, FU-PVSEC, Valencia(2010)

Advanced features: The F-RXI Spectrum Splitting

Advanced features: The "Nautilus" SOE (F-RXI-RI²)

Parameter	3J cell	Si cell
Geometrical concentration	625x	560x
Acceptance angle	0.75°	0.76°
Optical efficiency	85%	85%

CONFIDENTIAL

 $I_{sc}(\theta) / I_{sc}(0)$

- **SMS 3D** method is the most advanced design method in the field of the Nonimaging Optics.
- Optical surfaces in HCPV concentrators as freeform Köhler integrating arrays.
- Potential to obtain devices with acceptance-concentration products approaching the maximum value as derived from the **étendue** conservation theorem.
- Possibility to "invest" half of the system in more **advanced** features and use high tolerance budget we have.

HE INSTITUTE OF OPTICS

Head Worn Displays "A Playground for Freeform Surfaces"

Jannick Rolland

Brian J. Thompson Professor of Optical Engineering The Institute of Optics, University of Rochester, NY

> www.odalab-spectrum.org (Optical Diagnostics and Applications Lab)

> > rolland@optics.rochester.edu

Research Focused on Optical See-Through

How do we want to Achieve OPTICAL SEE THROUGH

We have envisioned for some time that the future for Augmented Reality

- Is hands-free (not hand-slaved) tech.
- Will display information in situ

-10

Off-Combiner Designs Scalable from 20 to 100 deg.

HEAD-WORN DISPLAYS: The Future Through New Eyes

> Jannick Rolland and Ozan Cakmakci

As display technologies shrink in size and grow in sophistication, digital "glasses" represent a next generation of mobile devices.

OPTI ADII

OPN April 2009

Towards FreeForm Optics

Freeform Optical Elements in HWDs

We have designed and also fabricated a first RBF-freeform surface

Revision Eyewear

Cakmakci et al., in SPIE **7618** 761803, 2010

Freeform Optical Surfaces using Radial Basis Functions (RBFs) (as a Generalization of Multivariate Polynomials)

