Laser and Parametric Optical Frequency Combs

Scott Diddams

National Institute of Standards and Technology Dept. of Physics University of Colorado Boulder, CO

scott.diddams@nist.gov

Outline

- 1. Background: Clocks and Precise Timing
- 2. Counting Cycles of Light
 - The optical frequency comb
- 3. From Lab Scale to Chip Scale
 - Can we make a frequency comb on a chip?
- 4. Applications and opportunities for frequency combs

Moving from Lab Scale to Chip Scale

Potential Impact:

- Operation in any environment
- Chip scale clocks
- Inexpensive and mass produced
- Communication and navigation
- Sensing (environment, medical, manufacturing...)

The Whispering Gallery

St. Paul's Cathedral (London)

Sound waves travel along circular walls by continuous reflection

Pul. William Ramsay. Sept. 1394

Rayleigh.

Rayleigh, L. "The problem of the whispering gallery" Scientific Papers, 5, 617, 1912

Whispering Gallery Microresonators

Microresonator Gallery

Key Properties

• High-Q cavity (>10⁹)

• Low & controllable dispersion

Small mode volume

- Integrated chip-scale package
- Mode-spacing given by perimeter

[1] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little & D. J. Moss (Nature Photonics 4, 41 – 45, 2010)

- [2] J.S. Levy, A. Gondarenko, M.A. Foster, A.C. Turner-Foster, A.L. Gaeta & M. Lipson (Nature Photonics 4, 37 40, 2010)
- [3] P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg (Nature 450, 1214-1217, 2007)
- [4] A.A. Savchenkov, A.B. Matsko, V.S. Ilchenko, I.Solomatine, D. Seidel, and L. Maleki (Phys Rev Let. 101, 093902, 2008)

[5] S.B. Papp and S.A. Diddams (PRA 84, 053833, 2011)

[5] F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese & A. M. Weiner (Nature Photonics 5, 770, 2011)

Nonlinear Optics at mW Powers

 $V = 500 \ \mu m^3$ (50 μm dia. microtoroid) $Q = 10^8$ $I_{circ} = 3 \ GWatts/cm^2$ (1 mWatt input)

Parametric Oscillation

Kippenberg, Spillane, Vahala, *Physical Review Letters*, August (2004).

Savchenkov, Matsko, Strekalov, Mohageg, Ilchenko, Maleki, *Physical Review Letters*, December (2004).

A Tiny Revolution in Frequency Combs

Comb Generation Principle

Microresonator Research at NIST

Microresonators for Comb Generation

- \rightarrow Q ~ 10⁶ 10⁹
- \rightarrow Large mode volume for low noise
- → Small mode volume for efficient nonlinear optics

Microresonators for SBS and Laser Stabilization

Devices: Vahala (Caltech), Srinivasan (NIST)

Kerr microcomb hardware

"Whispering gallery" mode

Tapered Fiber Coupling

Kerr microcomb hardware

Si₃N₄ + lensed fibers

Moritex.com

Chip

Microcomb Initiation

 \rightarrow Initiate Kerr comb by tuning frequency of CW pump laser into a resonance of the microresonator

Kerr Nonlinear Microcavity Resonance

Kerr microcomb 'phase space'

Kerr Solitons

Comb generation governed by **Kerr effect and dispersion**, described by **Lugiato-Lefever equation**:

Solitons in microcombs

Examples of Solitons

Comb-resonator detuning & mode crossings

- Resonator has dispersion, but comb has uniform spacing!
- Walk-off between resonator modes and comb modes decreases power in wings
- Perturb resonator mode-structure via coupling with different mode *family* in resonator

Comb generation locally enhanced/diminished in presence of mode crossing

Phase-Locked Combs

NIST

Pascal Del'Haye, Nat. Comm (2015)

Phase-Locked Combs

How can we understand these spectra ?

Kerr soliton crystals

Spectrum:

- Intense comb every 24 modes
- Sech² profile
- High contrast

Origins of this spectrum:

- 23 pulses on a *perfect* 24x5
 = 120 site lattice
- Multi-soliton Kerr comb
- Not a stable LLE solution!

Lattice caused by **mode** crossing defects.

Model/Data agreement

Cross-correlation crystal characterization

Multi-soliton crystals

- Multi-solitons accessed by slow laser ramp into resonance
- Stable configurations—not always uniformly distributed
- Low-noise, phase-locked spectra

Self-referencing a microcomb

1. Octave spectra on-chip

2. Spectral broadening outside resonator – ultrafast pulse broadening

Self-Referencing a Microcomb

Pascal Del'Haye, Nature Photon (2016)

Self-Referencing a Microcomb

A frequency stabilized microcomb!

Fluctuations at level of H-maser

Self-referencing on a chip?

Goal: An octave-span, self-referenced microcomb on a chip **Challenges:** Integration, power, frequency control & basic nonlinear optics **Approach:** Dual reduction gear 200 THz \rightarrow 1 THz \rightarrow 15 GHz **Leverage:** Photonic integration (pump laser, PPLN, photodiodes)

THz microcomb chip

Kartik Srinivasan Qing Li Daron Westly

Octave Span & Dual Dispersive Waves

Q. Li OSA FiO postdeadline 2015

Octave Span & Dual Dispersive Waves

 dual dispersive waves via dispersion engineering

Travis Briles

 "through" and "drop" ports provide optimal out-coupling of 1000 and 2000 nm

10 Through Port, AQ6370D (600-1700nm) (W0013) **Optical Power [dBm]** Drop Port, AQ6375 (1200-2400nm) (L0001) 0 -10 ~220 mW in waveguide -20 -30 -40 -50 -60 -70 -80 1000 1200 1400 1600 1800 2000 2200 2400 Wavelength [nm]

Spectra enable self-referencing!

Control of dispersive wave positions

Adjust dispersion (coarse change to resonator cross-section) and pump wavelength to shift comb to other desirable spectral windows

Fine control of dispersion (e.g. via ring width) for harmonic (*f*-2*f*) dispersive waves

Self-referencing on a chip?

Goal: An octave-span, self-referenced microcomb on a chip **Challenges:** Power, frequency control & basic nonlinear optics **Approach:** Dual reduction gear 200 THz \rightarrow 1 THz \rightarrow 15 GHz **Leverage:** Photonic integration (pump laser, PPLN, photodiodes)

Counting the THz Rep. Rate

Brilles, Drake, Stone (NIST)

Heterogeneous Integration on Silicon

Waveguids, Filters, Splitters

1550 nm lasers and SOAs (UCSB, Aurrion) Atoms? (Kitching, et al, NIST)

Heck et al. JSTQE 2013, Bowers, IEEE FCS (2016)

Getting the Technology out of the Lab...

Atomic "wristwatch" http://www.LeapSecond.com/

Thank you!

Staff: Tara Fortier, Scott Papp, Franklyn Quinlan

Students: Daniel Cole, Connor Fredrick, Holly Leopardi, Alex Lind, Dan Maser, Jordan Stone

Postdocs: Fred Baynes, Katja Beha, Travis Briles, Aurélien Coillet, Josue Davila-Rodriguez, Pascal Del'Haye, Tara Drake, Dan Hickstein, Andrew Klose, Erin Lamb, William Loh, Antoine Rolland, Daryl Spencer, Gabriel Ycas

Visitors: Yi-Chen Chuang, Flavio Cruz, Lorenzo Hernandez, Francisco Senna, Chaitanya Sudapalli

Collaborators: John Bowers (UCSB), Joe Campbell (Virginia), Kartik Srinivasan (NIST Gaithersburg), Kerry Vahala (Caltech)

NIST Time & Frequency Division Boulder, Colorado scott.diddams@nist.gov www.tf.nist.gov

Funding: NIST, DARPA, AFOSR, NASA, NRC