Multimodal Quantum Control Micro-Spectroscopy I

Coherent control of ultrafast molecular dynamics

Outline

- I. Coherent Control
 - Concepts of Coherent Control
 - Learning Loop: Pulse shaping, algorithms
 - Applications:
 - Control of 2-Photon-Absorption Control of energy transfer
- II. Single beam CARS
- Nonlinear Raman spectroscopy
- Shaped CARS
- Multimodal microscopy

Multimodal Quantum Control Micro-Spectroscopy

Femtochemistry

Ultimate timescale for chemical dynamics

Chemistry (microscopic) = Breaking and making bonds

General goal: Maximize yield of desired products and suppress yield of unwanted byproducts

Cut through a multidimensional PES:

Reaction coordinate

How can we supply energy to get over barrier and achieve a specific product?

Typical macroscopic approach: Temperature wanted and unwanted products formed statistically

	Passive control	VS.	Active control		
1.	Reactant molecules and any surrounding solvent molecules are not subjected to manipulation by external influences during the evolution from reactants to products.	External manipulation of molecular dynamics so as to influence the evolution of the reactant molecule to generate more or all of a particular product			
2.	Evolution of energized reactant molecules is largely or completely incoherent	Electric fieldsOptical fields			
3.	 Role of experimenter is to initiate the reaction, without having control of subsequent evolution of the system Concentration Temperature 		Intensity Phase		
			Polarization		
			Spectral content		
	• Pressure		Time dependence		
	• pH				
	• Solvent				
	• Catalyst				
	0 1 1 1	I			

• Synthetic criteria

Coherent control of chemical reactions

- calculation for real molecules complicated (if not impossible)
- experimental realization of predicted E-fields difficult

Control strategies

Tannor, D. J., Kosloff, R. & Rice, S. A. Coherent pulse sequence induced control of selectivity of reactions: Exact quantum mechanical calculations.J. Chem. Phys. 85, 5805-5820 (1986)

Brumer-Shapiro scheme: *Multiple-path interference control*

Excite the desired product channel via two different pathways:

Probability (**P**) of forming a product:

 $P = P_1 + P_3 + 2P_{13}\cos(\phi + \delta_{13})$

P. Brumer and M. Shapiro, Chem. Phys. Lett. 126 (1986) 541

"teaching lasers to control molecules"

R.S. Judson and H. Rabitz, PRL 68 (1992) 1500

Simple shaping of fs pulses

Different frequencies travel at different group velocities in materials, causing pulses to expand to highly "chirped" (frequency-swept) pulses.

Longer wavelengths almost always travel faster than shorter ones.

From R. Trebino, GaTech

Shaping of fs-Laser Pulses

Reference: A.M. Weiner, Rev. Sci. Instrum. 71 (2000) 1929

Liquid crystal spatial light modulator

Cooperation with: IOQ-Universität Jena Jenoptik AG Appl. Phys. B 72 (2001) 627

Liquid crystal spatial light modulator

Principles of pulse shaping (cont´d)

- Singlebeam-CARS uses most often femtosecond laser pulses due to their large bandwidth.
- Pulse shaping cannot be accomplished in the time domain, because no modulator is fast enough.

 $H(\omega)$ is a complex mask function, this means amplitude an phase can be controlled.

Principles of pulse shaping

Appl. Phys. B **72** (2001) 627

Parameterization of excitation mechanism

Chem. Phys. Lett. **326** (2000) 445, Phys. Rev. A **64** (2001) 023420

Spectral range of a liquid crystal mask

NIR / VIS: 4-f-setup

Transmission spectrum of liquid crystal mask CRI-256

No modulation of pulses in the UV and mid IR

2

з

Appl. Phys. B **76** (2003) 711; JOSA B **26** (2009) 1538

Methods of pulse shaping

Acousto-optic modulator

Liquid-crystal modulator

Individually-addressed pixels can vary phase or amplitude

Modulated rf field creates an amplitude- and phasedependent grating

Deformable mirror

Array of movable elements allows phase variations of spectral components

- Review: "Femtosecond pulse shaping using spatial light modulators" A. M. Weiner, Rev. Sci. Inst. **71** (2000) 1929-1960
- Tutorial: "A newcomer's guide to ultrashort pulse shaping and characterization" A Monmayrant et al., J Phys B - Atom Mol Opt Phys **43** (2010) 103001

Complex fs-pulse shaping techniques

Pulse shaper	LCD	ΑΟΜ	AOPDF	Def. Mirror
Modulation	Phase, amplitude and polarization	Phase and amplitude	Phase, amplitude and (polarization?)	Phase only
Pixels	128 (650)	1800	450	continous (16 stamps)
Transmission	70 %	30 %	30 %	95 %
Waveform update Rate	10 Hz	100 kHz	100 kHz	few 10 Hz
Group-delay range	4 ps	3 ps	3 ps	few 5 fs
Additional imposed chirp	Negligible (reflective optics)	270000 fs ²	12500 fs ²	No chirp

Optimization Algorithms

Phys. Rev. A 64 (2001) 023420

Coherent control of two photon transition

Science 288 (2000) 824; Appl.Phys. B 71 (2000) 277

See also Silberberg group, e.g. Nature 396 (1998)

Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses

A. Assion, T. Baumert,* M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber

Control of photofragmentation, cont.

Photosynthetic purple bacteria

Light harvesting + *reaction center unit*

LH2 from Rps. acidophila

LH2 of Rps. Acidophila - Standard model

- Significant loss channel IC
- Negligible cross talk IC-EET
- Energy funnel precludes back transfer

Closed-loop approach on LH2

64-parameter optimisation of IC/EET

400

Convergence curve Optimal pulse FROG trace 258 SHG Wellenlänge, nm 1,4 256 IC/ET (relative to TL) 1,3 254 ,2 252 1,1 korrelation 520 1,0 Auto-35 10 15 20 30 0 5 25 Generation -200 -400 200 0 Verzögerung, fs

Nature **417** (2002) 533 ChemPhysChem **6** (2005) 850

Coherent Control of Retinal Isomerization in Bacteriorhodopsin

Valentyn I. Prokhorenko, ¹ Andrea M. Nagy, ¹ Stephen A. Waschuk, ² Leonid S. Brown, ² Robert R. Birge, ³ R. J. Dwayne Miller^{1*}

www.sciencemag.org SCIENCE VOL 313 1 SEPTEMBER 2006

Reducing the complexity

Collaboration with AMOLF/Twente

PNAS 105 (2008) 7641

Further reduction of complexity

Chem. Phys. Lett. **421** (2006) 523

Annual. Rev. Phys. Chem. 65 (2014) 39

Pulse Spacings

Energy (cm ⁻¹)	T(fs)	2 T(fs)	3 T(fs)	4 T(fs)	5 T(fs)
1524	21.9	43.8	65.7	87.6	109.5
1157	28.8	57.6	86.4	115.2	144
1004	33.2	66.4	99.6		

Control of ground state vibrations

Nonlinear Raman spectra

Control of excited state dynamics in carotene

- Additive phase term *c* affecting the wavepacket evolution?
- Need for further theoretical investigation

Coherent Control + Spectroscopy

Quantum Control Spectroscopy (QCS)¹⁻⁴

- Modify the excitation to learn more about the dynamics
- Several possible "new" molecular responses :

Example of QCS-approach:

- → Disentanglement of complex dynamics in carotenoids!
- (1) Faraday Discus. **153** (2011) 213
- (2) IEEE J. Quantum Electronics 18 (2012) 449
- (3) Chem. Phys. **350** (2008) 220
- (4) PNAS 105 (2008) 7641

