Multimodal Quantum Control Spectroscopy II Nonlinear Raman and coherent control

Marcus Motzkus, Physikalisch-Chemisches Institut Universität Heidelberg

Siegman International School on Lasers ICFO, Spain

24 -29 July 2016

Outline

I. Coherent Control

- Concepts of Coherent Control
- Learning Loop: Pulse shaping, algorithms
- Applications:

Control of 2-Photon-Absorption Control of energy transfer

II. Single beam CARS

- Nonlinear Raman spectroscopy
- Shaped CARS
- Multimodal microscopy

Light Scattering: Rayleigh / Raman

Important Raman spectral regions

Coherent Anti-Stokes Raman Scattering (CARS)

- $\mathsf{E}_{\mathsf{CARS}} = \mathsf{N} \cdot \chi^{(3)}_{\mathsf{CARS}} \cdot \mathsf{E}_{\mathsf{p}} \cdot \mathsf{E}_{\mathsf{s}} \cdot \mathsf{E}_{\mathsf{p}'}$
- $\left|_{\mathsf{CARS}} \propto \mathbf{N}^2 \cdot \left| \chi_{\mathsf{CARS}}^{(3)} \right|^2 \cdot \left|_{\mathsf{p}} \cdot \right|_{\mathsf{s}} \cdot \left|_{\mathsf{p}'} \right|_{\mathsf{s}} \right|_{\mathsf{p}'}$

- Low scattering cross-section
- Fluorescence background
- Susceptibility |χ⁽³⁾|²: Chemical selectivity
- Intensity I³: fs-pulses, Signal only from focus → 3D-imaging
- Concentration N²: Detection of majority species

The nonlinear susceptibility $\chi^{(3)}$

Time-resolved CARS

Annual. Rev. Phys. Chem. 65 (2014) 39

Multiphoton Microscopy

Zipfel et al., Nature Biotech. 21, 11, 1369 (2003).

Débarre et al., Nature Methods 3, 47 (2006)

Cheng et al., Biophys. J. 83, 502 (2002).

$S_{Signal} \propto I_{Exc}^n \rightarrow 3D$ resolution \rightarrow Use ultrashort (fs) pulses: High peak intensity while low

High peak intensity while low average power Broad bandwidth for versatile excitation

CARS Microscopic Chemical Imaging

Ternary Polymer blend concentration map:

CARS Technological Challenges

Picosecond CARS

Two syncronized ps-lasers:

- + Benchmark setup in literature
- Detection of a single resonance: slow, problems with contrast in complex samples
- Synchronization difficult

Cheng et al., Biophys. J. **83** (2002) 502

CARS Technological Challenges

Multiplex CARS (MCARS)

Syncronized ps- and fs-laser:

- ps-Laser (ω_p , $\omega_{p'}$) determines spectral resolution
- Broadband fs-Laser (ω_s) for spectral coverage
- + Rapid spectral acquisition
- +Complex samples
- Synchronization

MCARS with only One Laser

Multiplex CARS (MCARS)

Syncronized ps- and fs-laser:

One laser broadband MCARS^[1-3]:

[1] T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004)

[2] H. Kano and H. Hamaguchi, Appl. Phys. Lett. 85, 4298 (2004)

[3] E. R. Andresen et al., J. Opt. Soc. B 22, 1935 (2005)

Multiplex CARS

- Narrowband Pump (< 3 nm, better than 60 cm⁻¹ spectral resolution)
- Broadband Stokes (> 300 nm, coverage up to 3500 cm⁻¹)

J. Raman Spectrosc., 38, 916 (2007).

Samples: A. Pagenstecher, Marburg

Purkinje cells (red) grey matter (orange) nuclei of granule cells (dark blue) white matter (myelin, pink fiber bundles)

Fast tissue imaging with CARS: Mouse brain

Quantitative backward calculation of the sample components

Biomedical Opt. Exp. 2 (2011) 2110

Simplify CARS even further...

- [1] N. Dudovich, D. Oron, Y. Silberberg, *Nature* **418**, 512 (2002)
- [2] S.-H. Lim, A. Caster, S. R. Leone, Phys. Rev. A. 72, 041803 (2005)
- [3] B. von Vacano, W. Wohlleben, M. Motzkus, J. Raman Spectrosc. 37, 404 (2006)

Nonlinear microscopy with shaped pulses

Phys. Chem. Chem. Phys. 10 (2008) 681

Single-beam CARS

Single-beam CARS: Need for short pulses

Von Vacano et al. J. Raman Spec. **38** (2007) 916

Control strategies

Control of Raman transitions

Two coherent Raman excitations → interfering pathways (like double slit)

Control of Raman transitions

Broadband spectrum, many colors → Many interfering pathways

Dependence on the phase

Modulation of phase: time vs. frequency domain

• Transform limited pulse, no spectral discrimination

• Sine phase with period Ω_m creates subpulses spaced in time $\tau_m = 2\pi / \Omega_m$

Principles of pulse shaping

Appl. Phys. B **72** (2001) 627

Parameterization of excitation mechanism

Chem. Phys. Lett. 326 (2000) 445, Phys. Rev. A 64 (2001) 023420

Single-beam-CARS schemes

Truly time-resolved Single-beam CARS

- indistinguishable roles: Pump, Stokes, probe
- Only one octave of wavenumbers

• E₁, E₂, E₃, ... with

Two-color double pulses

Defined roles: Pump + Stokes
 (E₁) and probe (E₂)

Truly time-resolved Single-beam CARS

Phys. Chem. Chem. Phys. **10** (2008) 681 Opt. Comm. **264** (2006) 488

Raman Control of a Binary Mixture

- Combine multipulse sequence for selective excitation with timedelayed probe pulse
- Raman quantum control of molecular vibration!

Coherent Anti-Stokes Raman Scattering (CARS)

$$\mathsf{E}_{\mathsf{CARS}} = \mathsf{N} \cdot \chi^{(3)}_{\mathsf{CARS}} \cdot \mathsf{E}_{\mathsf{p}} \cdot \mathsf{E}_{\mathsf{s}} \cdot \mathsf{E}_{\mathsf{p}}^{\mathsf{T}}$$

$$|_{\text{CARS}} \propto \mathbf{N}^2 \cdot |\chi_{\text{CARS}}^{(3)}|^2 \cdot |_{p} \cdot |_{s} \cdot |_{p'}$$

Dependencies of the signal at square law detection:

- Susceptibility |χ⁽³⁾|²: Chemical selectivity
- Intensity I³: Signal only from the focus, 3D-imaging
- Concentration N²: Detection of majority species

Sensitivity?

CARS Microscopy

<u>Coherent Anti-Stokes</u> <u>Raman Scattering</u>

CARS-Field: Coherent sum

$$E_{CARS} = N \cdot \chi_{CARS}^{(3)} \cdot E_{p} \cdot E_{s} \cdot E_{p}, \qquad E_{CARS} = \sum_{N} E_{MOI, N} \longrightarrow \begin{array}{l} \text{Detect Field:} \\ \text{Linear in N!} \end{array}$$

$$I_{CARS} \propto N^{2} \cdot |\chi_{CARS}^{(3)}|^{2} \cdot I_{p} \cdot I_{s} \cdot I_{p}, \qquad I_{CARS} \propto \left|\sum_{N} E_{MOI, N}\right|^{2}$$

Interferometric Field detection - Mix CARS-Signal with Local oscillator:

$$|I_{Det} \propto |E_{CARS} + |E_{LO}|^2 \propto |C_{CARS} + |L_{LO} + 2\sqrt{|L_{LO}|C_{CARS}} \cdot \cos \Delta \phi_{LO}$$

- S^(Het) scales linearly with N: Linearization
- S^(Het) is proportional to the square root of I_{LO}: Amplification
- S^(Het) is sensitive to $\Delta \phi_{\text{LO}}$

- The LO is created from the blue spectral part (ND)
- The excitation part of the spectrum is chopped for Lock-In detection

Optics Letters **31**, 2495 (2006)

Application to Microfluidic Detection

- scheme in a 100 μ m capillary
- Further simplification: compact fiber laser

Appl. Phys. B **91** (2008) 213

Single-Beam fs-pulse shaping: <u>Spectral Focusing</u>

Focusing on transitions by controlling the excitation!

- \rightarrow well suited for imaging
- \rightarrow usually CH-stretching vibration $\Delta\omega$ =2845 cm⁻¹
- \rightarrow chemical map of lipid distribution

Naumov et al. Appl. Phys. B **77** (2003) 369 Hellerer et al. Appl. Phys. Lett. **85** (2004) 25 Langbein et al. Appl. Phys. Lett. **95** (2009) 081109 Chen et al. J. Phys. Chem. B **114** (2010) 16871

Contrast & increased signal

Skin samples kindly provided by Prof. Schäkel from the department of dermatology at the Heidelberg University hospital

Opt. Lett. 40 (2016) 5204

Time-delay Scan

JOSA B 33 (2016) 1482

Silberberg Annu. Rev. Phys. Chem. 79 (2009) 2009.60

Multiplex CARS: Narrowband probing

Multiplexing single-beam-CARS

$$S(\omega) \propto \left| E_{CARS,b}(\omega) + E_{CARS,n}(\omega) \right|^{2} = \left| E_{CARS,b}(\omega) \right|^{2} + \left| E_{CARS,n}(\omega) \right|^{2} + 2\left| E_{CARS,b}(\omega) E_{CARS,n}(\omega) \right| \cos\varphi$$

Opt. Lett. 37 (2012) 4239

Further modalities: Heterodyne Multiplex CARS using phase gate

→ Single-beam-CARS and phase shaping gives spontaneous Raman spectrum!

Single-beam-CARS and two-photon fluorescence

Measurements on acetonitrile and DCM

Phase-dependence of the 2PEF

 \rightarrow DQSI signal is overlaid by 2PEF

J. Raman Spec. 44 (2013) 1379

J. Raman Spec. 44 (2013) 1379

Outlook: Multimodal microscopy with shaped pulses

Simultaneous multimodal imaging

Transform-limited probing region

- Highly increased multimodal signal
- Simultaneous acquisition together with resonant CARS

Multimodal RGB image

Opt. Express. **22** (2014) 28790 Opt. Lett. **40** (2015) 5204 JOSA B **33** (2016) 1482

