Siegman Laser School 2016 24-29 July 2016 ICFO-Barcelona

Ultrafast Laser Spectroscopy and Applications to Dynamics at Interfaces and Solids

Martin Wolf Fritz-Haber-Institut der Max-Planck-Gesellschaft

Motivation: Elementary interactions in solids

Goal: Mechanistic understanding of the coupling and energy flow between the subsystems governing ultrafast phenomena

Motivation: Elementary interactions in solids

Goal: Mechanistic understanding of the coupling and energy flow between the subsystems governing ultrafast phenomena

Can phonon pumping induce phase transitions ?

Phase transitions in solids induced by optical phonon pumping

Control of the electronic phase of a manganite by mode-selective vibrational excitation

Matteo Rini¹, Ra'anan Tobey², Nicky Dean², Jiro Itatani^{1,3}, Yasuhide Tomioka⁴, Yoshinori Tokura^{4,5}, Robert W. Schoenlein¹ & Andrea Cavalleri^{2,6}

Figure 1 | Pr_{0.7}Ca_{0.3}MnO₃ crystal structure and vibrational spectrum.

Insulator-to-metal transition driven by resonant phonon excitation

M. Rini et. al, Nature 449, 73 (2007)

Driving material response by intense THz fields

- Excitation of magnons in NiO by a THz magnetic field pulse
- Two photon excitation and phase control of a Raman active mode in diamond

How to control spins as fast as possible?

most natural stimulus: magnetic field B(t)

 \Rightarrow Zeeman torque

$$T = \gamma S \times (B_{\rm int} + B)$$

most efficient coupling at resonance: Larmor frequency $\omega_L = \gamma |B_{int}|$

ferromagnets: < 10 GHz, antiferromagnets: ~ 1 THz

Hiebert, Freeman, PRL (1997)

⇒ apply strong THz magnetic field pulse to antiferromagnet

Experiment: THz pump – infrared probe

THz

pump

detect Faraday rotation

Idea:

THz magnetic field pulse induces transient magnetization which is detected via Faraday rotation of optical probe pulse

0.4 MV/cm

0.13 T

realized for ferromagnets below 10 GHz see e.g. Hiebert, Freeman, PRL (1997

NiO: A ,textbook' antiferromagnet

- adjacent (111) planes have opposite Ni²⁺ spins
- antiferromagnet with Neel temperature of 523K
- collective spin resonance (q = 0 magnon) at 1THz

Sievers et al., PRL (1963)

NiO: A ,textbook' antiferromagnet

- adjacent (111) planes have opposite Ni²⁺ spins
- antiferromagnet with Neel temperature of 523K
- collective spin resonance (q = 0 magnon) at 1THz

Sievers et al., PRL (1963)

oscillation at 1THz, decay time 40ps \Rightarrow signature of q = 0 magnon at 1THz

Spinwave driven by magnetic field

Observation: induced magnetization ∞ driving field

⇒ driving force is the magnetic (not electric) field !

⇒ free carrier and lattice excitation negligible (NiO is insulating & all optical phonons > 12 THz)

Coherent spin control with THz pulses

Discussion

Zeeman-torque driven coherent THz magnon in the time domain

Benefits of coherent control with THz magnatic fields:

- does not require spin-orbit coupling
- no parasitic two-photon absorption
- fields up-scalable without sample destruction

T. Kampfrath et. al, Nature Photonics 5, 31 (2011)

Excitation of IR or Raman active phonon modes

IR excitation

difference frequency Raman excitation (SRS)

sum frequency Raman excitation

Equation of motion

THz-pumping of F_{2g}-mode in Diamond

THz-pumping of F_{2g}-mode in Diamond

THz-pumping of F_{2g}-mode in Diamond

Dependence on excitation frequency

Coherent excitation of the F_{2g} phonon at half-resonance frequency $\omega = 1/2\Omega$

Is this a sum frequency Raman process ?

check fluence dependence

Benefits of sum frequency Raman excitation

Sum frequency Raman excitation allows to actively control the phase of coherent phonons by setting a pump pulse with dedicated carrier envelope phase (CEP) !

$$\implies E(t) = A_1 e^{-i\omega_1 t + \varphi_{CEP}} + A_2 e^{-i\omega_2 t + \varphi_{CEP}} + c.c.$$

difference frequency Raman excitation sum frequency Raman excitation

$$[E(t)]^2 \sim e^{-i(\omega_1 - \omega_2)t} + C.C$$

$$[E(t)]^2 \sim e^{-i(\omega_1 + \omega_2)t} + 2\varphi_{CEP} + C.C.$$

THz generation scheme:

difference-frequency mixing in GaSe of 2 phase-correlated infrared pulses

Phase Control via the THz-CEP

Light field CEP is imprinted on the coherent phonon phase!

Discussion

New mechanism for coherent phonon excitation: sum frequency Raman excitation

> prevents parasitic electronic excitations

Coherent control of the **phonon phase** via control of THz-pump CEP

Motivation: Elementary interactions in solids

Goal: Mechanistic understanding of the coupling and energy flow between the subsystems governing ultrafast phenomena

Photoinduced insulator-to-metal transition in tri-tellurides (RTe₃) Coherent amplitude mode excitation probed by time-resolved photoemission (ARPES)

Phase transitions and ultrafast dynamics

 Phase transitions in solids (near equilibrium) Ultrafast photoexcitation (non-quilibrium)

What can be learned from bringing the system out of equilibrium?

Timescale to induce a transition to a non-equilibium state
 Spectroscopy of such excited states and ,new' phases
 Siposet.FilmNestorele/fatert/7e969t(2008) equilibrium

Electronic band structure of solids

What is the origin of metallic, semiconducting and insulating behaviour?

Use single-particle band theory (*i.e.* neglect e-e correlations)

► half filled band ⇔ metal

filled valence band or semiconductor

Charge density wave formation

Are materials with a half filled valence band always metals?

One-dimensional metallic system with a half filled band can be unstable against lattice distortion — Peierls instability

Note: wave vector $2k_{\rm F} = \frac{\pi}{a}$ fulfills Bragg reflection condition

Ultrafast photoinduced phase transitions

What can be learned by bringing the system out of equilibrium?

Exploit separation of timescales between different processes:

Timescale to induce the transition to a different phase

Probing the dynamics of the order parameter (How fast is the gap closing ? Is there coherent dynamics)

Transient electronic structure probed by trARPES

Adding time-resolution to angle-resolved photoemission (ARPES) provides direct access to the transient electronic structure of photoexcited solids

Transient electronic structure probed by trARPES

Tri-Tellurides – a model CDW system

Tight-binding model: Te 5p orbitals coupled by $t_{||}$ und t_{\perp}

Diamond shaped Fermi surface

Curvature of bands \propto ratio t_{\perp}/t_{\parallel}

V. Brouet, et al., PRL 93, 126405 (2004)

Fermi surface of TbTe₃

Transient electronic structure probed by trARPES

Goal: Probe dynamics of electronic structure directly by time-resolved ARPES

F. Schmitt *et al.,* Science **321**, 1649 (2008)

Ultrafast electronic melting of CDW state: TbTe₃

Snapshots of electronic structure E(k) at different time delays:

Delayed collaps of CDW gap (>100 fs) after photodoping

Time-resolved Fermi surface: DyTe₃

Simultaneous mapping of k_x , k_y , E_{kin} versus time delay Δt

Time-resolved Fermi surface: DyTe₃

- Gapped area and metallic pocket well resolved with pTOF
- Excellent agreement with 7eV ARPES data and tight-binding model

Dynamics:

- Collapse of the large gap within ~150 fs
- Recovery of metallic Fermi surface (FS)
- Heavy oscillations of intensity near FS

Simultaneous mapping of k_x , k_y , E_{kin} versus time delay Δt

Dynamics along the Fermi surface

Dynamics of the gapped region: DyTe₃

Dynamics of the CDW band gap

Conclusion:

- Insulator-to-metal transition (lower CDW band shifts above E_F)
- At least two phonon modes modulate the CDW gap indicating a complex dynamics in the excited state.)

- Transient evolution of the lower and upper CDW band
- Pronounced oscillations of the ions in potential of the excited CDW system: amplitude mode

Discussion: CDW amplitude mode

Schematic sketch of the CDW potential energy surface

L. Rettig et al., Faraday Discuss. 171, 299 (2014) & Nature Commun. 7, 10459 (2016)

Probing the full Brillouin zone: XUV-based trARPES

Goal: Probing transient electronic structure of solids throughout k-space

Desired parameters of trARPES photon source:

- Sufficient photon energy to access full Brillouin zone, i.e. hv > 10 eV
- High repetition rate providing **good counting statistics**, i.e. >100 kHz
- Time resolution: from few fs to several 10 fs pulse duration
- Flexibility in time-bandwidth product: Adapted energy resolution

Development of 500 kHz OPCPA System

Puppin et al., Opt. Expr. 23, 1491 (2015)

Walk-off compensated configuration

Development of 500 kHz OPCPA System

Puppin et al., Opt. Expr. 23, 1491 (2015)

Walk-off compensated configuration

XUV-based time-resolved ARPES setup

Semiconducting transition metal dichalcogenides

General characteristics: layered crystals, about 40 different TMDCs

• MoS₂ • WSe₂

<u>No intra-layer</u> inversion symmetry

Pronounced excitonic effects:

• up to several 100 meV binding energy for freestanding monolayers

Pronounced spin-orbit splitting:

• up to 500 meV spin splitting in valence band

Peculiar electronic structure:

- •spin-, valley- and layer degrees of freedom
- pronounced k-dependence

500 kHz HHG-based ARPES

Excited state dynamics in WSe₂

-40

0

40

Pulse Delay (fs)

80

Projection of spin-, valley- and layer-polarization on excited states

→ These states govern interlayer coupling, transport, …

Ultrafast surface chemistry Probing chemical bond formation at surfaces by femtosecod x-ray spectroscopy

Dell'Angela et al., Science 339, 1302 (2013)

H. Öström et al., Science 347, 978 (2015)

Dynamics of chemical reactions ons

Goal: Microscopic understanding of reaction dynamics

Dynamics of chemical reactions

Femtochemistry at metal surfaces

Ultrafast energy redistribution after optical excitation of a metal surface

Review: Ch. Frischkorn & M.Wolf, Chem. Rev. 106, 4207 (2006)

Photon in – photon out methods: X-ray emission

A. Nilsson, Surf. Sci. Rep. 55, 49 (2004)

occupied valence state

Resonant inelastic X-ray scattering (RIXS)

Time-resolved RIXS of laser-excited CO/Ru(0001)

fs-laser-induced CO oxidation probed by trXAS

Summary: Dynamics of CO oxidation

Both O and CO are excited and "collide" in reactive adlayer during CO₂ formation: Formation of transient OC–O species

Distribution of OC–O bond lengths close to transition state

Transition states region is more represented and the state of the s

- Various elementary processes in physics, chemistry, biology occur on femtosecond time scales.
- Femtosecond laser pulses exhibit unique properties for metrology of light, non-linear optics, ultrafast spectroscopy & more.
- Examples:
 - Time-domain THz spectroscopy of photoexcited carriers.
 - THz pumping of low frequency modes (magnons, phonons)
 ⇒ an unconventional way to couple energy into the system
 - Dynamics of electronic band structure in solids probed by trARPES
- There exists a large toolbox to induce and probe ultrafast dynamics in solids and at interfaces (THz to x-rays, electrons,...)
- These tool have specific strengths, but also limits...