Left side

TEST

Right side

bottom

Тор

Laser applications to the study of atomic quantum structure.

2017 OSA Siegman International School on Lasers, CIO, León, México, August 2017 Luis A. Orozco www.jqi.umd.edu

NIST

Anthony E Siegman (1931-2011)

Plan of the course:

1st lecture: Introduction to the interaction of light with atoms, (nanofibers).

2nd lecture: Atom-light interaction of a two level atom, (nanofibers and cavity QED). 3rd lecture: Different types of laser traps for atoms, (nanofibers, cavity QED, and spectroscopy)

4th lecture: Real atomic structure in Rb and Fr.

5th lecture: Weak interaction studies with Fr, a proposal.

1st lecture: Introduction to the interaction of light with atoms, (nanofiber examples).

Bibliography 1st lesson. Review Article: P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston "Optical Nanofibers: A New Platform for Quantum Optics". Advances in Atomic Molecular and Optical Physics, Vol. 46, 355-403, Edited by E. Arimondo, C. C. Lin, and S. F. Yelin, Academic Press, Burlington (2017).

ArXiv:1703.10533

1. A review of Electricity and Magnetism

Maxell's Equations: $\nabla \cdot (\varepsilon_0 \mathbf{E} + \mathbf{P}) = 0,$ $\partial \mathbf{B}$ $\nabla \times \mathbf{E} = -\frac{\mathbf{e}^{-}}{\partial t},$ $\boldsymbol{\nabla} \times \mathbf{B} = \mu_0 \frac{\partial (\varepsilon_0 \mathbf{E} + \mathbf{P})}{\partial t}$ $\nabla \cdot \mathbf{B} = 0.$

Maxell's Equations: $\nabla \cdot (\varepsilon_0 \mathbf{E} + \mathbf{P}) = 0,$ $\partial \mathbf{B}$ $\nabla \times \mathbf{E} = -\frac{\mathbf{e}^{-}}{\partial t},$ $\boldsymbol{\nabla} \times \mathbf{B} = \mu_0 \frac{\partial (\varepsilon_0 \mathbf{E} + \mathbf{P})}{\partial t}$ $\nabla \cdot \mathbf{B} = 0.$

Wave Equation:

$$\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^{2} \mathbf{E}$$

$$= -\frac{\partial}{\partial t} (\nabla \times \mathbf{B}) = -\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} - \mu_{0} \frac{\partial^{2} \mathbf{P}}{\partial t^{2}}$$

$$-\nabla(\nabla \cdot \mathbf{E}) + \nabla^{2}\mathbf{E} - \mu_{0}\varepsilon_{0}\frac{\partial^{2}\mathbf{E}}{\partial t^{2}} = \mu_{0}\frac{\partial^{2}\mathbf{P}}{\partial t^{2}}.$$

In free space, $\nabla \cdot \mathbf{E} = 0$ and $\mathbf{P} = \mathbf{0}_{1}$

$$\nabla^2 \mathbf{E} - \frac{1}{v_0^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

A note about polarization Gauss's Law in free space: $\nabla \cdot \vec{E} = 0$

$$\nabla_T \cdot \vec{E} + \frac{2\pi}{\lambda} i E_Z = 0$$

If there is a "transverse gradient" in the radiation field propagating in *z*, there is a longitudinal polarization also in *z*

Optical Nanofibers

Making Sense to the Scale

Optical Nanofibers

Polarization at the fiber waist

Polarization at the fiber waist

2. Lorentz model of the atom

The atom of Lorentz: the electron oscillating around the heavy ion $m\ddot{\mathbf{x}} + m\omega_0^2\mathbf{x} = 0$

Driven by a monochromatic field:

$$\mathbf{E}^{(+)}(t) = \hat{\varepsilon} E_0^{(+)} e^{-i\omega t}$$

Driven harmonic oscillator

$$m\ddot{\mathbf{x}}^{(+)} + m\omega_0^2 \mathbf{x}^{(+)} = -\hat{\varepsilon}eE_0^{(+)}e^{-i\omega t}$$

 $\mathbf{x}^{(+)}(t) = \hat{\varepsilon} x_0^{(+)} e^{-i\omega t}$ $-m\omega^2 x_0^{(+)} + m\omega_0^2 x_0^{(+)} = -eE_0^{(+)}$

There is a resonance (divergence) and a change of phase $x_0^{(+)} = \frac{eE_0^{(+)}/m}{\omega^2 - \omega_0^2}$

The atomic dipole then is:

$$\mathbf{d}^{(+)} = -e\mathbf{x}^{(+)}$$

With damping (the charge is accelerated so it radiates):

$$m\ddot{\mathbf{x}}^{(+)} + m\gamma\dot{\mathbf{x}}^{(+)} + m\omega_0^2\mathbf{x}^{(+)} = -\hat{\varepsilon}eE_0^{(+)}e^{-i\omega t}$$

$$x_{0}^{(+)} = \frac{eE_{0}^{(+)}/m}{\omega^{2} - \omega_{0}^{2} + i\gamma\omega}$$

On resonance there is a phase lag of $\pi/2$ and there is no divergence.

$$\delta = \tan^{-1} \left(\frac{\gamma \omega}{\omega_0^2 - \omega^2} \right)$$

Polarizability (scalar):

$$\alpha(\omega) = \frac{e^2/m}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

Suceptibility (scalar)
$$\chi(\omega) = \frac{Ne^2/m\epsilon_0}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

Relation between the polarizability and the dipoles

$$\mathbf{d}^{(+)} = \alpha(\omega)\mathbf{E}^{(+)}$$
 and $\mathbf{P}^{(+)} = \epsilon_0\chi\mathbf{E}^{(+)}$

Complex refraction index

$$\tilde{n}(\omega) = \sqrt{1 + \chi(\omega)} \approx 1 + \frac{\chi(\omega)}{2}$$

$$\tilde{n}(\omega) \approx 1 + \frac{Ne^2}{2m\epsilon_0} \frac{(\omega_0^2 - \omega^2)}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2} + i \frac{Ne^2}{2m\epsilon_0} \frac{\gamma\omega}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}$$

$$E(z) = E_0 \exp(ikz) = E_0 \exp(i\tilde{n}k_0z)$$

$$= E_0 \exp(i\text{Re}[\tilde{n}]k_0z) \exp(-\text{Im}[\tilde{n}]k_0z)$$
Index of refraction and absorption coefficient

$$n(\omega) := \operatorname{Re}[\tilde{n}(\omega)]$$
$$a(\omega) := 2k_0 \operatorname{Im}[\tilde{n}(\omega)]$$

Near resonance
$$|\omega - \omega_0| \ll \omega_0$$

$$n(\omega) \approx 1 + \frac{Ne^2}{2m\epsilon_0} \frac{(\omega_0 - \omega)/2\omega}{(\omega_0 - \omega)^2 + (\gamma/2)^2}$$
$$a(\omega) \approx \frac{Ne^2}{m\epsilon_0 c\gamma} \frac{(\gamma/2)^2}{(\omega_0 - \omega)^2 + (\gamma/2)^2}.$$

Lorenzian lineshape (one derivative-like of the other). Related to the Kramers Kronig relations.

Lorentzian approximiation near resonance:

Beer's Law for the transision of light
through an absorbing medium
$$\frac{dI}{dz} = -aI \implies I(z) = I_0 e^{-az}$$
$$a(\omega_0) = \sigma(\omega_0)N = \sigma_0N$$
$$\sigma_{\text{classical}}(\omega_0) = \frac{e^2\omega^2}{m\epsilon_0 c} \frac{\gamma}{(\omega_0^2 - \omega^2)^2 + \gamma^2\omega^2} \bigg|_{\omega = \omega_0} = \frac{e^2}{m\epsilon_0 c\gamma}$$

Abrahams Lorentz model:

$$\gamma = \frac{e^2 \omega_0^2}{6\pi m \epsilon_0 c^3}$$

The result for the classical radiation cross section of a dipole gives:

$$\sigma = \frac{3\lambda^2}{2\pi}$$

Coincides with the result from quantum mechanics for a two level atom

3. Atom field coupling

Normal Coupling

- The "absorption" of classical dipole is its cross section: $\sigma = 3\lambda^2/2\pi$ (same as a QM two level atom).
- The energy of an electric dipole d in an electric field E:

$$H_{\rm int} = \vec{d} \cdot \vec{E}$$

: atom, dipole

Rate of decay (Fermi's golden rule)

What is the mode density?

The phase space where the emitted light or particles have to "land"

What is the interaction?

This could be electric, magnetic, weak, or strong.

The spectral mode density for two polarizations $n(\omega)$

 $dk_x dk_y dk_z = 2 \times 4\pi k^2 dk$ $n(\omega)d\omega = 2 \times 4\pi \frac{\omega^2}{c^3}d\omega$

 $n(\omega) = 8\pi \frac{\omega^2}{c^3}$

The QM electric dipole interaction, operators: $H_{int} = \vec{d} \cdot \vec{E}$ QM Operator : $\vec{d} = e \left\langle \Psi_i | \vec{r} | \Psi_f \right\rangle$

Note that this integral is zero if the two states have the same parity, for example if they are the same: when the atom is in the ground state or when it is in the excited state!

Rate of decay (Fermi's golden rule)

Decay into the nanofiber mode

Density of modes in 1D $\gamma_{1D} \approx \frac{2\pi}{\hbar} \rho(k) \langle H_{int} \rangle^2$

Decay into the nanofiber mode

Density of modes $\gamma_{1D} \approx \frac{2\pi}{\hbar} \rho\left(k\right) \left\langle H_{int} \right\rangle^2$ Proportional to the electric field of the guided mode. $|E|^{2} = \mathcal{E}^{2} \left[K_{0}^{2}(qr) + wK_{1}^{2}(qr) + fK_{2}^{2}(qr) \right]$

Evanescent Coupling

Coupling Enhancement

 $\alpha = \frac{\gamma_{1D}}{\gamma_0}$

What is the physical meaning!

Purcell Factor

 $F_P = \frac{\gamma_{tot}}{\gamma_0} = \frac{\alpha}{\beta}$

 $F_P > 1$ Enhancement of spontaneous emission $F_P < 1$ Inhibition of spontaneous emission

ONF Optical Density

 $OD_1(\vec{r}) = \frac{\sigma_0}{A(\vec{r})}$ Not to scale 0.15 σ_0/A_{eff} 0.10 0.05 0.00 50 100 150 200 250 0 r (nm)

ONF Optical Density

Cooperativity and Optical Density

Cooperativity and Optical Density

Summary:

- 1. Review of Electricity and Magnetism. Polarization of the Electromagnetic field.
- Dipoles (antennas, atoms). The model of Lorentz and its response (Polarizability).
- 3. Different ways to quantify the atom-light coupling with respect to nanofibers and cavity QED.

Gracias