Imperial College London

A Commercial Story: Midaz Lasers Ltd – *from Research to Product to Exit*

Michael Damzen Founder Director & CTO

Presentation to "Siegman International School of Lasers" 10th August 2017

Academic \rightarrow Spin-Out \rightarrow Exit \rightarrow Academic

Mike Damzen – "the academic"

- Professor of Experimental Laser Physics @ Imperial College London
- Academic researcher for 30 years
 - Fellow of the Institute of Physics (IoP)
 - Fellow of the Optical Society of America (OSA)
 - 150 peer-reviewed journal papers
 - ~250 conference presentations
 - 2 books & 6 book chapters
 - 6 patents
 - ~ 40 successfully completed PhD students

Lasers = exciting science + enabling technology

Lasers – Enable Our Modern World

Communication

Manufacture

Medical

Limitless potential of Light!

Sensing

Projection

Metrology

Energy

Fundamental science

Defence

The Road to Spin-Out (1/2)

Technology

Micro-slab ultra-high gain laser amplifier technology (1999)

IP

Key Patent Filed (2002)

Ultra-high efficiency, high power lasers built since 2001

Further Filings prior to company formation (2006)

Drive for Spin-Out

Strong Interest from multi-billion \$ US company (2005)

The Road to Spin-Out (2/2)

Formation of Team:

Founder (CTO) Co-founder (CSO) Chairman (Business Angel) Business Development Manager Imperial Innovations (Director) Finance Officer /Secretary

Formation of a Business Plan

Freedom to operate secured

Pitch to Investors

Investment & Company Operation Started June 2006

Performance breakthrough

World's highest gain solid-state laser amplifier

Midaz Micro-Slab Technology

Key market: laser industrial manufacturing (~\$2.5B)

"where our superior laser peak power (MW) & performance leads to

faster (x5), smaller (x5) & significantly lower cost (x5)

manufacturing of high-tech products."

Operating in Imperial Incubator

First Packaged Laser – Aug 2006

First Installation – August 2006

Driven in departmental transit van – to North Wales!

First Revenue – after 2 months operation!!

Product Evolution

Challenge 1: Know customer needs (1/2)

Engage with end-user (customer) as soon as possible!

In our case end-user was an industrial customer or Systems Integrator

Challenge 1: Know customer needs (2/2)

Midaz engaged with customers in several HIGH VALUE market sectors:

- Silicon cutting and scribing (& <u>defect inspection</u>)
- Diamond processing (industrial & gemstones)
- Automotive/Aerospace (e.g. turbine blades)
- Laser ID Marking of high tech products
- ➢ Solar cells
- Touch panel displays
- Medical micromachining (e.g. stents)

Challenge 2: Packaging Technology (1/3)

We built many laser prototypes to engage with early customers

but....

a challenging step to engineer production units

Challenge 2: Packaging Technology (2/3)

Early Prototypes – to engage with customers

- Early prototypes helped us engage early with customers
- Customer engagement enabled us to try to develop technology along market-driven route

High energy laser for general processing applications

Our smallest -25W "matchbox" laser

Our first aircooled laser for laser marking market

UV laser for processing silicon & touch-screens

Challenge 2: Packaging Technology (3/3)

Engineered "production" unit

- Packaging complex technology is hard
- Don't forget: Safety / CE marking / regulations
- Reduce Build Cost!!

Product Family - Modular Design

Midaz Achievements

- Designed & engineered cutting-edge laser technologies
 - Ultra-high gain bulk amplifier (~10⁶)
 - Ultra-high (MHz) rep rate Q-switch pulsed lasers
- Products sold world-wide
- **Responsive innovations to meet customer needs**
- New Technologies trialled & other Contracted work
 - Adaptive coherent beam combining
 - Diode-pumped Alexandrite lasers

How to do the next step?

How to scale up production to meet volume orders?

- 1. Invest in manufacturing facility ourselves
- 2. Strategic partnership for manufacturing
- 3. (Trade) Sale to company valuing our technology/IP

Successful Trade Sale in 2012!

- Technology proven to work
- Good IP
- "No Skeletons in the closet"

Good return on investment

- Iow personnel & expenditure ("slow-burn")
- revenue generation + grant/contract work

Difficulty for Academic to Spin-Out

- Lack of Business (Market) Knowledge
- Shift from <u>Curiosity-driven Science</u> to need to generate <u>Product</u> and <u>Revenue</u>
- Giving away 'control' & stepping back as technology matures
- Not being able to publish your (best) work

Lessons | learnt!

- Technology business is really hard work
 - Small team managing all the company's needs
 - Packaging complex technology
 - Engaging with customers
 - Cash-flow = deadlines...!!!
- Time always too short investment always too small
- Preferably have a platform technology

"first product is unlikely to be the right one"

What about you?

- Know-how
- Patent
- Licence
- Start-Up Company
- Consultancy

- Or Not