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Ideal Short Pulse: Fourier Transform Limit

Transform limited pulse –
phase changes linearly in 
time throughout the pulse

Eg: Gaussian amplitude profile pulse:

The Fourier Transform of this wave is:

We don’t measure the amplitudes, we measure the irradiance, I, 
and spectral power, S.
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Ideal Short Pulse: Fourier Transform Limit



Material Dispersion, n(l)



Material Dispersion
Single wavelength:

Holding time constant,
t = t0

z0 z

where   

w is a constant of the wave, and k is material dependent, l0 is the 
wavelength in vacuum



Material Dispersion

Where E(t) is a complex function, and here we will assume the 
amplitude is Gaussian

The phase of the wave is no longer simply linear with time or 
distance.

Chirped Optical Pulses:

Taking z=0,      ftot = w0t + f(t)

The instantaneous frequency is given by:



Material Dispersion

So what is ftot as a function of distance z?   

As we have seen, the phase changes with propagation 
length:

f(z) = f0+kz

But k is not linearly dependent on frequency

And for some reason, we no longer use the symbol k for 
wavenumber, but we talk about a propagation constant, 
b(w).



Material Dispersion

The propagation constant then varies with w and the 
frequency dependent refractive index  

But we have written the electric field as a function of time and 
propagation length, and the phase was time dependent

Time and frequency are Fourier Transform pairs so you 
cannot simply write an expression for f(t) using b(w)

b(w) depends on the material, but it doesn’t depend on time



Material Dispersion

f (w,z) = f (w,z=0) + b(w)z

You must use the Fourier Transform of the electric field E(z, w)

If we are concerned with propagation, then we can 
choose to have the starting point be z=0.

As long as the material is not absorbing (gain), only the 
phase is changed by propagation: 

Where G is complex giving both the bandwidth of the 
spectral amplitude and the frequency dependent phase



Material Dispersion

But n(w) is a complicated function so instead we can use 
a Taylor Expansion, as long as the bandwidth is small 
compared to the central frequency, ω0 .

ftot(w,z) = ftot(w,z0) + b(w)z



Dispersion Terms

Group Velocity Dispersion (GVD)



Pulse Stretching

Assume we start with a transform limited Gaussian pulse in 
time:

After propagating a distance z, in a material the 
electric field now has the expression:

The Fourier transform of a Gaussian pulse in time is Gaussian 
in frequency:

We will consider the propagation constant up to 
second order (GVD) in the Taylor expansion.



Pulse Stretching

Rearranging the expression gives:

We need to Fourier Transform this expression to get the time 
dependent field.



Pulse Stretching

We can now write a shifted time coordinate: t’= t - b’z

And write a z-dependent pulse width parameter G(z) 

Fourier Transform, with central frequency term pulled out in 
front, to have frequency in terms of the difference: (w-w0)

Substituting in expression for E(z,w) gives:



Pulse Stretching

Substituting in expression for G(z) and t’ gives:

The integral is the inverse Fourier transform of a Gaussian, giving:

Where we have substituted in the expressions for the phase 
velocity, vf(w0)=w0/b0 and group velocity, vg=1/b’.

E(z,t) is still a Gaussian, where the phase travels with the phase 
velocity, the amplitude profile travels with the group velocity and 
the width of the pulse is determined by G(z)



Chirped Pulse: Non-Fourier Transform Limited

Where the phase can now be a 
complicated function of time

As long as the bandwidth is not too large we can use a Taylor 
expansion to write, f(t) – for now we just need terms up to t2.

This phase gives a linear chirp:



Chirped Pulse: Non-Fourier Transform Limited

Compare this to the Gaussian pulse stretched by dispersion:



For the pulse chirped from dispersion, we want to write G in 
terms of a and b:

G(z) = a - ib

Chirped Pulse: Non-Fourier Transform Limited



The shorter the original pulse, the larger the value G0, 
which shows that for the same dispersion, b’’,  the pulse 
can get longer for a shorter original pulse.

a

Chirped Pulse: Non-Fourier Transform Limited



Note: the spectral bandwidth has not been altered by dispersion, 

Chirped Pulse: Non-Fourier Transform Limited



Angular dispersion - parallel gratings

“Optical Pulse Compression With Diffraction Gratings” Edmond 
B. Treacy,  IEEE J. Quantum Electron, 1969, QE-5, p. 454, 



Angular dispersion - parallel gratings

Because the gratings are 
parallel, all wavelengths that 
travel in the same beam 
incident on the first grating will 
leave the second grating 
parallel to the incoming beam

Because each wavelength diffracts from the gratings at different 
angles, they travel different distances to get from the x=0 plane 
before striking the first grating back to x=0 after diffracting off 
the second grating



Angular dispersion - parallel gratings

The phase accumulated from 
x=0 back to x=0 for each 
wavelength is given by:

f = kp, where p is the path 
length traveled

Now we are assuming that the gratings are in vacuum so there is 
no material dispersion so we can write:

and



Angular dispersion - parallel gratings

Now we need an expression for 
p as a function of w

First we use geometry to get:

p = b(1 +cos q)

Where b is the distance 
travelled between the two 
gratings and is wavelength 
dependent



Angular dispersion - parallel gratings

p = b(1 +cos q)

And then we use the grating equation to get an expression for 
(g-q) as a function of l and d, the grating constant.

Where G is the perpendicular distance 
between the two gratings and (g-q) is 
the angle between b and the grating 
normal



Angular dispersion - parallel gratings

The path length DBE and D’B’E’ 
from the same phase front to 
another phase front have the same 
phase difference, but the path 
lengths are clearly different.  The 
grating phase of -2p for every d 
along the grating distance, BB’ must 
be added to the equation for f



Angular dispersion - parallel gratings

The total phase is then given by:



Angular dispersion - parallel gratings

Once again the phase is a complicated function, so we 
will use a Taylor expansion again.  This time we write f
as a Taylor expansion:



Dispersion 

From the Taylor expansion of the propagation constant, we had:

The first derivative term in the expansion for f, would be:

The second derivative term in the expansion for f, would be:



Angular dispersion - parallel gratings

If you carry out the first derivative you get:

You can show that the second and third terms cancel to get:



Angular dispersion - parallel gratings

If you carry out the second derivative and substitute in the 
grating equation where needed you get:

Take note that the GDD of a parallel grating dispersion line is 
always negative – it can balance positive material dispersion



Angular dispersion - parallel gratings

This gives us the dispersion of the pulse peaks as a function 
of the bandwidth 

Since we measure the bandwidth in wavelength, l, Treacy
wrote the dispersion as:

These expressions tell you how big the separation b, needs to 
be to achieve the wanted stretched pulse duration



Dispersion with Prisms – Material and Angular

“Negative dispersion using pairs of prisms” R.L Fork, O. E. 
Martinez, and J.P. Gordon,  Opt. Lett., 1984, 9, 15-17 

For smaller values of 
frequency chirps, we can use 
parallel but opposing prisms.  
Again to get back to a circular 
beam, we use a second pair of 
prisms or a mirror at HH’ 



Dispersion with Prisms – Material and Angular

Optical path lengths, P,  
of CDE and CB must be 
equal 

We can use the 
equivalent path length 
CJ = P

P = l cos b



Dispersion with Prisms – Material and Angular

f=kP



Dispersion with Prisms – Material and Angular



Dispersion with Prisms – Material and Angular

Where P is the optical path length and L is the length



Dispersion with Prisms – Material and Angular

The 2 is for the double 
set of prisms



Dispersion with Prisms – Material and Angular
From Snell’s Law, where the 
prime angles are inside prism

For the apex angle, a and using Brewster’s angle :

f1 f2

a



Dispersion with Prisms – Material and Angular

*Note there 
is a typo in 
the paper

The second term typically dominates giving negative dispersion –
like a grating pair, but much smaller magnitude – used in short 
pulse oscillators.



Chirp Compensation

For wavelengths < 1.5µm, material dispersion is typically 
positive 

In the original optical pulse compression systems, optical 
fibers were used to stretch the pulses with this positive 
GDD, and then grating compressors with negative GDD 
were used to compress the bandwidth 

In the first ~ 100 fs oscillators, the positive dispersion from 
the crystals and mirrors was balanced by the negative 
GDD of prism compressors placed inside the oscillators
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