Imperial College London

Siegman International School on Lasers August 2017, CIO Mexico

Space Lasers 2

Professor Mike Damzen Imperial College London, UK

Alexandrite as an alternative to Nd:YAG?

Diode

808nm

Nd:YAG

Nd:YAG Nd³⁺:Y₃Al₅O₁₂

Alexandrite

Alexandrite Cr-doped Chrysoberyl Cr³⁺:BeAl₂O₄

1064nm

Why Alexandrite?

Remote Sensing provides valuable data

Diode-pumped Alexandrite

- New waveband & tunability for new science
- High efficiency (NIR & UV) & robust

Atmospheric monitoring:

- Climate change science
- Atmospheric science
- Weather prediction

Space-borne (global coverage)

Air-borne

UAV

e.g. CO₂, aerosols/clouds, wind

e.g. vegetation; water; ice

Earth System monitoring:

- Health of Earth's bio-sphere
- Crop / Forestry management
- Disaster management

Alexandrite for Vegetation Lidar

"...see the woods and the trees!"

Alexandrite operates across the red-edge band of vegetation

Outline

- Introduction to Alexandrite
- Diode-Pumped Alexandrite
 - ➢ Fundamental Studies (>1W, TEM₀₀)

Power Scaling Results (multi-10W)

Systems Development (Q-switched)

Conclusions

What is Alexandrite?

- Alexandrite = Cr³⁺-doped Chrysoberyl (Cr³⁺:BeAl₂O₄)
- First room-temperature vibronic laser (1978)
- Broad absorption (pump) bands across visible
- 3-level lasing transition (²E ⁴A₂) @ 680nm (R-line)
- Broadband 4-level lasing (${}^{4}T_{2} {}^{4}A_{2}$) centred @ ~ 755nm

Alexandrite Lasing Spectroscopy

Comparison of Cr-doped lasers

Alexandrite - an excellent material for high pulse power

- Broad tunability (~700-850nm)
- High thermal conductivity 23 Wm⁻¹K⁻¹ (x2 Nd:YAG)
- High fracture resistance (x5 Nd:YAG)
- Linearly-polarised (no depolarisation issues)
- High laser-induced damage threshold (>270J/cm²)
- Long storage time 260µs (Ti:S 3µs) *Diode-pumped Q-switching*

High Power

Alexandrite	Tuning Range		
Fundamental	700 – 850 nm	NIR	
SHG	350 – 425 nm	UV / Blue	
THG	233 – 287 nm		
FHG	175 – 212 nm	Deep UV	

Alexandrite is a complicated lasing system

- Low stimulated emission cross-section σ_e (0.7 10⁻²⁰ cm²)
- Effective σ_e increases with T (larger Boltzmann filling factor)
- Upper-state lifetime (τ) decreases with T
- ESA is present $\sigma_2(\lambda)$
 - ➤ at laser and pump wavelengths
 - > minimum in centre of lasing band (~770nm)
- GSA (most important at short lasing λ towards 700nm)

Fluorescent emission of Alexandrite

Prior Diode-Pumped Alexandrite?

Year	Author	Power	Slope eff.
1990	Scheps	2mW	25%
1993	Scheps	25mW	28%
2005	Peng	1.3W	24%
2013 2014	Beyatli Yorulmaz	195mW 48mW	34% 36%

Fibre-delivered diode-pumped Alexandrite

Fibre-coupled Red-Diode-Pumped Alexandrite Laser

Parameter	(nominal) Value	
Power	5 W	
Wavelength	636 nm	
Spatial (M ²)	43	
Polarisation	unpolarised	
Fibre core	105 μm	
Fibre NA	0.22	

> 1W, TEM₀₀ Alexandrite laser

Highest Power 1.08W (& slope efficiency 44.2%) TEM₀₀ mode

Excellent TEM₀₀ Mode Quality

 TEM_{00} mode with M² ~ 1.05 at maximum power P = 1.08W

Enhanced Slope Efficiency with short Alexandrite rod (L=4mm)

•TEM₀₀ ; $M^2 = 1.05$

Alexandrite Laser – double-pass pumping

Improving Theoretical Modelling of Alexandrite Laser

Fig. 1 (a) Laser power against wavelength for a temperature controlled laser. (b) ESA ratio γ against crystal temperature in Alexandrite. (c) Intrinsic efficiency of Alexandrite along with its constituent components. (d) Threshold (top) and slope efficiency (bottom) of an Alexandrite laser versus crystal temperature and wavelength.

Pump ESA measurement

Power-scaling diode-pumped Alexandrite

Diode-pumped Alexandrite – Power scaling strategies

Side-Pumped Slab – strategies for power scalability

High-power End-Pumped Rod

Diode-side-pumped Slab Alexandrite Laser

• Alexandrite slab: 20 x 2 x 2 mm (L x w x h) and doping 0.21 at% Cr.

First Multi-Watt Diode-Pumped Alexandrite Laser

- 'Free-running' pulse energy 23.4 mJ@100Hz (1ms QCW pump)
- Slope efficiency 42% (wrt absorbed pump)
- Average power 2.34W (6.4 W with CW pumping)

With cylindrical optics but much reduced power

Alexandrite Bounce Laser

Grazing-incidence (θ ~9⁰) TIR bounce path from the pump face

First Alexandrite Bounce Laser (>12W)

- Slope efficiency = 37% (43% including slab losses)
- Spatial: single mode vertical; multimode horizontal

First Direct Vortex Generation from a Vibronic Laser

Alexandrite Double-Bounce Laser

- NG 0.22 at.% slab 20 x 2 x 2 mm (thin slab)
- Significant reflection losses from AR slab faces

Alexandrite Compact Double-Bounce Laser

Compact cavity

TEM₀₀ cavity

• Promising approach – minimise losses + enhanced spatial control

Alexandrite End-Pumped Rod Laser (CW)

Compact cavity

>26W Diode-End-Pumped Alexandrite Rod Laser Highest Power (20x prior end-pumped work)

0.13at.%Cr rod; R_{oc}=99%

Development of diode-pumped Alexandrite systems

10-100mJ; 100Hz atmospheric (e.g.cloud/wind) lidar 100µJ; 10kHz; ~ns altimetry/vegetation lidar

Atmospheric LIDAR Specification

Signal-to-noise

Pulse Energy	100mJ	Vertical Resolution
Pulse Duration	< 100ns	
Pulse Repetition Rate	100Hz	 Lateral Resolution
Central Wavelength Band	720 – 820nm	
Spectral Width	< 0.0001nm (50MHz)	Spectral Resolution
Spatial Beam Quality	M² < 1.5	
		Spatial Resolution

Spatial Resolution

MOPA System Design

Q-Switched Master Oscillator (MO) Dual End-Pumped Rod

Q-switched MO Negative-g Cavity

Record: **3.80mJ** @ 50Hz, 250µs pumping

Pulse duration ~ 70 ns

Preliminary Amplifier TEM₀₀ Design (4-Pass and 6-Pass)

Vegeta	egetation LIDAR Specification			Signal-to-noise
	Pulse Energy	0.1mJ (single-photon counting detection)		Vertical Resolution
	Pulse Duration	< 3ns 🥏		
	Pulse Repetition Rate	10 kHz 🛛 🗕		Lateral Resolution
	Central Wavelength Band	720 – 820nm		
	Spectral Width	-		Spectral Resolution
	Spatial Beam Quality	M² < 1.5		

Spatial Resolution

A Space-Engineered Design

Cavity-dumped Q-switched Laser

Cavity-dumped Q-switched Laser Cavity-dumped output: 400 μJ @ 4 kHz t_p = 3ns (FWHM)!!

CW single end-pumped cavity-dumping: 200 μJ @ 10 kHz; t_p = 2.9ns (FWHM); TEM₀₀

SHG of Cavity-Dumped Output

Conversion efficiency = 47%

Engineering Development in Progress

Tunable Narrow-linewidth Alexandrite Laser

A Low-Cost Alternative to Ti:sapphire

Enabling Quantum Technologies

Passively Q-switched Alexandrite Laser

Conclusions

First Alexandrite laser Demonstrations & Designs

> New Knowledge Created

Next steps to raise performance & engineering design

> Target flexible wavelength lidar missions

Atmospheric monitoring

Vegetation monitoring

In parallel, to look at non-Space Opportunities

➢ e.g. Biophotonics + Quantum Technologies

Coherent Beam Combining – the next big thing in space lasers?