# Aberrations of the Eye: Implications to vision, eye growth, and imaging

#### Melanie Campbell

Physics & Astronomy, School of Optometry and Vision Science and Systems Design Engineering University of Waterloo, Waterloo, Ontario, Canada





OSA Webinar June, 2020

### Outline

- Background optics of the eye
- Monochromatic wavefront errors (aberrations) and image quality
- Chromatic aberration in the eye
- Measurements and correction of aberrations
- Importance to vision, eye growth, high resolution imaging

## Optics of the Eye



### Aberrations of the Eye

- Monochromatic aberrations -
  - blur when rays away from the axis focus differently than near axial rays (*spherical aberration, coma, astigmatism*)
  - Image curvature & distortion (*field curvature and distortion*)
- Chromatic aberration
  - difference in focus of rays of different colours
  - focus differently due to  $n(\lambda)$
  - Dependence of monochromatic aberrations on  $\lambda$

#### **Spherical Aberration**



# Factors Affecting the Eye's Image Quality

- GRIN of lens and aspheric surfaces

   Age, accommodation, rearing conditions
- Misalignment of components
- Tear film
- Pupil size
- Field angle

# Gradient Refractive Index Optics of the Lens of the Eye



#### **Excellent Optics: the Fish Lens**

Courtesy of J. Sivak

## In vitro Laser Scanning of the Crystalline Lens

Glasser and Campbell, 1998



# Methodology for Determining the GRIN Profile of the Lens



# Refractive Index Profile of the Human Crystalline Lens



#### Isoindicial Surfaces of the GRIN Model



**Campbell and Piers** 

Model of

#### Scans of 10 and 66 Year Old Lenses

Glasser and Campbell, 1998 Unstretched 10 year old lens (focal length = 34.16 mm)



Unstretched 66 year old lens (focal length = 71.29 mm)



Focal length of the older lens is too long for near vision

#### Accommodation in a Young Lens



Reproduced from Koretz, J.F., and Handelman, G.H., (1988), Scientific American

## Monochromatic Aberrations and Image Quality

#### Optics of the Eye



Note components are normally misaligned

#### Monochromatic Wavefront Error



# Wavefront Aberration and Point Spread Function (PSF)

Actual wavefront may vary from this ideal.



#### PSF's as a Function of Pupil Size

#### **Diffraction-limited eye**





#### Example of aberrated eye From Marcos









6 mm

## Monochromatic Aberrations and Vision

- Monochromatic aberrations reduce effects of chromatic aberrations
- Determines contrast sensitivity at intermediate spatial frequencies
- Reduces resolution at lower light levels with larger pupils

#### Chromatic Aberration of the Eye

#### **Longitudinal Chromatic Aberration**



Chromatic fringing: Eye has lower sensitivity to red and blue fringes Usually corrected in commercial lenses with achromatic doublets of two different refractive indices

# Longitudinal Chromatic Aberration: Eye Models



Bradley, 1992

- Water eye model gives a similar curve
- Crystalline lens dispersion responsible for deviation

## Longitudinal Chromatic Aberration





#### Longitudinal Chromatic Aberration Visual Effects



Because of V( $\lambda$ ) curve, effect of LCA (Longitudinal) on image contrast is equivalent to ~0.2 D of defocus (Thibos, 1991)

# Chromatic Difference of Magnification (CDM)



• Use the principal ray to define the image size, depends on stop position, dispersion

- Eye's pupil decentered
- CDM will increase linearly with field angle
  - •Also called Lateral CA, Transverse CA

#### **CDM Increases in Periphery**







# Centered Eye: LCA and CDM



increases linearly with field angle

#### Chromatic Aberration and Vision





 For a centered pupil, CDM is predicted as 67 sec of arc, < 1% but within acuity limit

- Nasal pupil decentration neutralises CDM, averages 30 sec but variable
- CDM very sensitive to pupil decentration, sign flips
- Increases if pupil in front of the eye

### Attempts to Correct CDM

- CDM variable with pupil size, pupil centre shifts up to 0.6 mm with pupil size; CDM sign changes at larger pupils
- Without precise centration, induced CDM cancels advantage of LCA correction (Carmen design)
- Powell lens has relatively low CDM when decentered
- Diffractive corrections of positive power partially compensate chromatic aberration
- Contact lens or IOL- effects of decentration lower, lens CDM important
- LCA is constant across individuals, CDM is variable

#### **CDM and Chromostereopsis**



Perception of a difference in depth arises from CDM (TCA) See Simonet and Campbell

#### Imperfect Optics Protect against Chromatic Blur

- McLellan, 2002
- When monochromatic aberrations are corrected, chromatic degradation more visible
- Chromatic correction could provide a larger benefit than monochromatic correction alone (Yoon, 2002)
- In presence of monochromatic aberrations, MTF less sensitive to wavelength



Figure 2 MTF area. a, Area under the MTF (arbitrary units) as a function of wavelength for a theoretical model eye with LCA only and for three subjects with measured wave aberrations. b, Mean MTF area for all three subjects when defocus is set to optimize area at 550 nm (solid line) and when each wavelength is individually optimized (dashed line). The dashed line shows that MTF area at any single wavelength can be improved further by correcting focus at that wavelength.

## Aberrations and Eye Growth

- Net aberrations change with rearing conditions
- Monochromatic and chromatic aberrations could provide signals to eye growth
- A match of image blur to cone sampling provides a stop signal to growth in the chick eye

#### Irradiance on the Cichlid Retina in Differing Rearing Conditions



## Chick Model of Normal Development and Myopia





#### **Optical Blur and Cone Resolution**





Retinal blur after response to the goggle for eyes with and without goggles calculated from measured aberrations and defocus. During accommodative fluctuations, there is a clear, visible signal to the direction of defocus, primarily from astigmatism. Scale bars are 15arcmin.

# Correction of Monochromatic Aberrations for High Resolution Imaging

#### Measurement of Wavefront Error



#### Hartmann-Shack Images

Ideal case







#### **Typical Wavefront Error**



#### Sample Human Wavefront & PSF

Wavefront



#### Point Spread Function (PSF)



#### Correction of Blur of the Eye's Optics



Important to light activated therapies

**Imaging - correction in both directions** 

# Adaptive Optics Correction of the Eye



#### Imaging Cones with Adaptive Optics





#### Uncorrected

Corrected

#### AO Corrected Imaging for Monitoring Diabetic Retinopathy



#### AO-Corrected Images for Monitoring Diabetic Retinopathy



Cone densities of controls (left) differed from patients (right)

## Amyloid Deposits as a Biomarker of Alzheimer's disease



#### Primary Pathology AD

#### Acknowledgements

FR





## **Students and Postdoc Openings**

 Graduate student and Postdoctoral positions for Physics, Biophysics and Vision Science students

### **Chromatic Aberration Correction**

| Table 15.3 | Details of an achromatizing lens of the Carman |
|------------|------------------------------------------------|
| design     |                                                |

| Spectral line<br>Wavelength (nm)                                | h<br>404.7         | d<br>587.6         | 750                |
|-----------------------------------------------------------------|--------------------|--------------------|--------------------|
| Refractive indices<br>Positive component<br>Negative components | 1.63776<br>1.65120 | 1.62041<br>1.62049 | 1.61417<br>1.61076 |
| Back vertex power                                               | 1.86 D             | -0.01 D            | +(),471)           |
| Effective power at cornea $(d = 12 \text{ mm})$                 | 1.82 D             | ~0.01 D            | +0.48 D            |
| Eye's $\Delta K$ (experimental)                                 | 1.70 D             | 0                  | +0.58 D            |
| Residual ∆K                                                     | +0.12 D            | +0.01 D            | +0.10 D            |
| Chromatic difference of<br>magnification                        | 0.963<br>(-3.7%)   | 1                  | 1.011<br>(+1.1%)   |

Powell lens is better

0.4 mm misalignment of achromatising lens cancels the effect of LCA correction (Zhang)

#### AO and Increased Pupil Allows Resolution of more Cones in Chick with Age



#### AO Corrected Imaging for Monitoring Diabetic Retinopathy



#### AO Corrected Images for Monitoring Blood Flow in a Human Eye



#### **Optical Blur and Cone Resolution**

As optical blur reduces to match cone resolution, axial elongation stops



PRESENTATION TITLE