Chip-Based Frequency Combs

Alexander Gaeta

Department of Applied Physics and Applied Mathematics

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

D

OSA Integrated Photonics Webinar January 19, 2021

Optical Frequency Combs

 $m\Omega + \Omega_0$ <u>()</u> integer spectrum Ω_0 frequency Carrier-envelope-offset frequency

Direct link between optical and microwave frequencies.

Telle, et al. Keller, APB (1999); Diddams et al., Phys. Rev. Lett. (2000).

Why an Octave-Spanning Comb?

- Control of the position in the comb frequencies can be achieved.
- Link between microwave & optical frequencies.

Udem et al. (1999); Telle et al. (1999).

Applications of Frequency-Comb Technology

- Chemical/biological sensing
- Optical communications & interconnects
- Optical clockwork
- Astronomical spectral calibration
- Microwave generation
- Navigation (GPS) and distance ranging
- Tests of fundamental laws and constants (*R*, Lamb shift, finestructure constant)
- Very-long baseline interferometry
- Arbitrary-waveform generation

Comb Generation with Ultralow Powers and in Highly Miniaturized Devices

Menlo Systems

Applications of Frequency-Comb Technology

Chemical/biological sensing

- Optical communications & interconnects
- Optical clockwork
- Astronomical spectral calibration
- Microwave generation
- Navigation (GPS) and distance ranging
- Tests of fundamental laws and constants (*R*, Lamb shift, fine-structure constant)
- Very-long baseline interferometry
- Arbitrary-waveform generation

Dual-Comb Spectroscopy

Suh, et al. Vahala, Science (2016). Dutt, et al. Gaeta & Lipson, Science Adv. (2018). Yu, et al., Lipson & Gaeta, Nature Comm. (2018).

Measurement of acetone absorption near 2925 nm in 1 μ s

Real-time on-chip dual-comb spectrometer for liquid/condensed matter phase studies

Applications of Frequency-Comb Technology

- Chemical/biological sensing
- Optical communications & interconnects
- Optical clockwork
- Astronomical spectral calibration
- Microwave generation
- Navigation (GPS) and distance ranging
- Tests of fundamental laws and constants (*R*, Lamb shift, fine-structure constant)
- Very-long baseline interferometry
- Arbitrary-waveform generation

WDM Source for Data Communications

Chip-Scale Multiple Wavelength Source

Applications of Frequency-Comb Technology

- Optical communications & interconnects
- Chemical/biological sensing

Optical clockwork and frequency synthesis

- Astronomical spectral calibration
- Microwave generation
- Navigation (GPS) and distance ranging
- Tests of fundamental laws and constants (*R*, Lamb shift, fine-structure constant)
- Very-long baseline interferometry
- Arbitrary-waveform generation

Dual Microcomb Optical Synthesizer

UCSB / NIST / Caltech /EPFL / UVa / Aurrion

Spencer, et al., Nature (2018)

Chip-Based Comb Generation: Cavity Solitons

Nonlinear Optics in Chip-Based Nanowaveguides

PHOTONICS GROUP SiO_2 $n \sim 1.5$ Si $n \sim 3.5$ $SiN: n \sim 2.1$)

Absorption edge: Silicon => ~ 1.1 μ m Si₃N₄ => ~ 400 nm

- Nonlinearity of Silicon 100X (Si₃N₄: 10X) silica
- Losses: Silicon 1 dB/cm (Si₃N₄ 0.01 dB/cm)
- Light confined to a region < than a wavelength.

Nonlinear Optics in Silicon-Based Nanowaveguides

PHOTONICS GROUP SiO_2 $n \sim 1.5$ Si $n \sim 3.5$ (SiN: $n \sim 2.1$)

Absorption edge: Silicon => ~ 1.1 μ m Si₃N₄ => ~ 400 nm

- Nonlinearity of Silicon 100X (Si₃N₄: 10X) silica
- Losses: Silicon ~ 1 dB/cm (Si₃N₄ 0.01 dB/cm)
- Light confined to a region < than a wavelength.
- Dispersion can be engineered.

Tailoring of GVD in Chip-Based Waveguides

Foster, Turner, Sharping, Schmidt, Lipson, and Gaeta, *Nature* **441**, 960 (2006). Turner, et al. Gaeta, and Lipson, *Opt. Express* **14**, 4357 (2006).

Chip-Based Comb Generation

- Phase matched process that relies on higher-order dispersion Dudley *et al.*, *Rev. Mod. Phys.* (2006); Efimov, *et al.*, PRL (2005).
- Position of DW's given by dispersion operator

Dudley, et al. Rev. Mod. Phys. (2006).

Dispersive Wave Generation in Chip-Based Combs

Outline: Chip-Based Comb Generation

Supercontinuum Generation

Review Article: Gaeta, Lipson, and Kippenberg, Nature Phot. (2019)

SCG in Integrated Photonic Waveguides

PHOTONICS GROUP

Chalcogenide

Lamont, et al., Opt. Exp. (2008). Lee, et al., Opt. Lett. (2014).

Hydex glass Duchesne, et al., Opt. Exp. (2010).

Silica Oh, et al., Opt. Lett. (2014).

Silicon

Hsieh, et al., Opt. Exp. (2007). Lau, et al., Opt. Lett. (2014). F. Leo, et al., Opt. Lett. (2015). Kuyken, et al., Opt. Exp. (2015).

Amorphous silicon

Dave, et al., Opt. Express (2013). Safioui, et al., Opt. Express (2014). Leo, et al., Opt. Express (2014).

Diamond Shams-Ansari, et al., Opt. Lett. (2019).

Silicon germanium Sinobad, et al., Optica (2018).

Aluminum gallium arsenide

Kuyken, et al., Opt. Lett. (2020).

Silicon nitride

Halir, et al., Opt. Lett. (2012). Chavez Boggio, et al., JOSA B (2014). Wang, et al., LPR (2015). Liu, et al., Opt. Lett. (2016). Carlson, et al., Opt. Lett. (2017). Porcel, et al., Opt. Exp. (2017). Guo, et al., Nature Photon. (2018).

Aluminum nitride Hickstein, et al., P.R. Appl. (2017).

Lithium niobate

Yu, et al., Opt. Lett. (2019). Lu, et al., Opt. Lett. (2019). Jankowski, et al., Optica (2020).

- 5-cm Si₃N₄ waveguide, 730 \times 1500 nm cross section
- 1560 nm pump, 100-fs pulse duration, 10 mW coupled power (80 MHZ)

Wavelength (nm)

- > 2 octave spanning comb
- Wide transparency (400 4600 nm) visible to mid-IR

Johnson, et al. Keller, Lipson, & Gaeta, Opt. Lett. (2015);

NONLINEA

Coherence Characterization of Supercontinuum Spectrum (Experiment)

Coherence of SCG

- Measure fringes in asymmetric Michelson interferometer [F. Lu *et al.*, Opt. Express (2004).]
- Extract visibility and coherence
 [J W. Nicholson et al., Opt. Express (2004); X. Gu et al., Opt. Express (2003)]

Johnson, et al., Lipson & Gaeta, Opt. Lett. (2015).

Comb-Offset Detection and Stabilization Using SCG in Si₃N₄

- Carrier envelop offset frequency (f_{ceo}) beatnote from *f*-to-2*f* interferometry
- Coupled pulse energy = 36 pJ
 Peak power = 0.34 kW
- f_{ceo} signal-to-noise ratio 40 dB

Mayer, et al., Lipson, Gaeta, Keller, Opt. Express (2015).

Effective Index

1.8

1.75

1.7 ⊾ 500

Simultaneous SHG and SCG with Si₃N₄

1000

 TE_{0}

TE₃

700

Second Harmonic Wavelength (nm)

800

900

600

f_{CEO} Detection via Simultaneous SCG and SHG

Si₃N₄ can exhibit $\chi^{(2)}$ response due to symmetry breaking at waveguide interface, high film stress, or electromigration

Lettieri, et al. (2002); Levy, et al. (2011); Khurgin, et al. (2015); Billat et al. (2017).

- 2-cm-long Si₃N₄ waveguide
- 200-fs pulse

Okawachi, et al., Lipson & Gaeta, Opt. Lett. (2018).

f_{CEO} Detection via Simultaneous SCG and SHG

• Measured f_{CEO} beatnote with 27 dB signal-to-noise ratio.

Carrier envelope offset frequency detection in a single device!

Okawachi, et al., Lipson & Gaeta, Opt. Lett. (2018).

800 nm

Lithium Niobate (LN) for SCG and SHG

- 5-mm-long LN waveguide
- TE mode to access largest $\chi^{(2)}$ nonlinear tensor component

Devices fabricated by Loncar Group

LN

SiO,

- Octave-spanning spectrum (700 2200 nm) with 107 pJ pulse energy
- Direct detection of f_{CEO} with silicon avalanche photodiode (400 – 1000 nm wavelength range)

-20 Power (dB) -40 -60 -80 2000 600 800 1000 1200 1400 1600 1800 2200 400 Wavelength (nm) $f_{\rm CEO} = 20 \text{ MHz}$ RF Power (dB) - Free-running -40 -60 -80 -100 0 100 Frequency Offset (kHz)

- *f*_{CEO} phase locked to rubidium frequency standard
- Feedback loop with phase detector and PID controller

f_{CEO} has 3-dB bandwidth of 1 Hz (resolution limited)

-20 Single-Sideband Phase Noise (dBc/Hz) 40 Power (dB) -40 20 Free-running f_{CEO} -60 Locked f_{CEO} 0 -80 600 800 1000 1200 1400 1600 1800 2000 2200 -20 400 Wavelength (nm) -40 In-Loop $f_{\rm CEO} = 20 \text{ MHz}$ $f_{\rm CEO} = 20 \text{ MHz}$ RF Power (dB) RF Power (dB) Free-running. -60 -40 -40 Locked $\Delta f_{\rm CEO} = 1 \, \rm Hz$ -80 -60 -60 10² 10³ 10⁶ 10^{4} 10⁵ 10 -80 -80 Frequency (Hz) 100 -100 0 -20 20 40 -40 0 Frequency Offset (kHz) Frequency Offset (Hz)

- f_{CEO} has 3-dB bandwidth of 1 Hz (resolution limited)
- >100 dB/Hz reduction of phase noise at 10 Hz

Okawachi, et al. Optica (2020).

Power (dB)

RF Power (dB)

On-Chip f-2f Interferometry for f_{CEO} Stabilization

10⁶

-20 Single-Sideband Phase Noise (dBc/Hz) 40 -40 20 Free-running f -60 Locked f_{CEO} 0 -80 600 800 1000 1200 1400 1600 1800 2000 2200 -20 400 Wavelength (nm) -40 In-Loop $f_{\rm CEO} = 20 \text{ MHz}$ RF Power (dB) = 20 MHz Free-running. -60 -40 Out-of-Loop--40 Locked $\Delta f_{CEO} = 1 \text{ Hz}$ -80 -60 -60 10^{2} 10^{3} 10⁵ 10 10 -80 Frequency (Hz) 100 -1000 -20 20 40 -40 0 Frequency Offset (Hz) Frequency Offset (kHz)

- f_{CEO} has 3-dB bandwidth of 1 Hz (resolution limited)
- >100 dB/Hz reduction of phase noise at 10 Hz
- Out-of-loop *f*_{CEO} measurement using conventional *f*-2*f* interferometer

Okawachi, et al. Optica (2020).

Future: Fully integrated Devices

All-Optical Clock

Kerr-Comb Generation

Review Article: Gaeta, Lipson, and Kippenberg, Nature Phot. (2019)

Comb Generation in Microresonators

Comb Generation in Microresonators

Lugiato-Lefever model: NLSE with ring-resonator B.C.

Lugiato and Lefever, (1987); Haelterman, et al.(1992); Leo, et al. (2010); Matsko, et al.(2011); **Coen, et al. (2013)** Chembo and Menyuk (2013); Lamont, Okawachi, & Gaeta (2013).

$$\frac{\partial}{\partial t}A = -(\alpha + i\delta)A - i\frac{L}{L_{DS}}\frac{\partial^2 A}{\partial \tau^2} + i\frac{L}{L_{NL}}|A|^2 A + \eta E_{in}$$
Cavity loss Dispersion Nonlinearity Pump & detuning
Dissipative soliton solutions exist

$$A(\tau) \sim C_1 + C_2 \sum_{j=1}^N \operatorname{sech}\left[(\tau - \tau_j) / \tau_0 \right]$$

Haelterman, Trillo, and Wabnitz, *Opt. Commun.* (1992). Wabnitz, *Electron. Lett.* (1993). Nakazawa, et al. (1988). Herr, et al., Kippenberg, Nature Phot. (2014).

Simulations: Dynamics versus Detuning

Jang, unpublished

Microresonator-Based Frequency Combs

Ultrahigh-Q SiN Microresonators

Ji, et al., Gaeta & Lipson, Laser & Phot. Rev. (2020).

Octave-Spanning Comb in Si₃N₄ Microresonators

QUANTUM & NONLINEAR

Modelocking & Dissipative Solitons in Microresonators

Herr, et al., Kippenberg, Nature Phot. (2014)

Scan time (ms)

Pump Detuning Control in Microresonators

Experimental Setup

Optical Spectrum Analyzer

Joshi, et al. Opt. Lett. (2016)

Resonance Scan

Joshi, et al., Lipson, Gaeta, Opt. Lett. (2016)

 Step-like features characteristic of soliton modelocking, similar to pump tuning Herr, et al. Nature Photon. (2014)

Multi-Soliton States

Spectral modulations due to relative positions of solitons

• Single Soliton – 1 FSR

• Two Soliton – 2 FSR

- Four Soliton 4 FSR
- Show good agreement with sech² envelope

Microresonator Comb Spectral Coverage

Mid-IR Soliton Modelocked Combs

• High pump-to-comb conversion efficiency (40%)

Yu, et al., Lipson & Gaeta, Optica (2016)

Synchronization of Microresonator Combs

Microwave mixing applications

Comb spacing mismatched

- 1) Fabrication uncertainty
- 2) Environmental fluctuations

- Couple <1% of output from one microresonator to other
- Timing of cavity solitons become synchronized

• Natural drift rate is 2 MHz for both cases.

Experimental Characterization – Beat-Note Measurement

COLUMBIA UNIVERSITY

Experimental Characterization – Beat-Note Measurement

COLUMBIA UNIVERSITY

Harmonic & Sub-Harmonic Synchronization

B sub-harmonic synchronization, and (b) 3:1 harmonic synchronization. The top microresonator in rom which coupling signal is derived t and t are roundtrip times of the coupling signal is derived to and t.

Fig. 2. Experimental evidence for (a) 1:3 sub-harmonic synchronization, and (b) 3:1 harmonic synchronization. Red curves show results the uncoupled cases, while blue curves for the coupled cases with coupling transmissions of (a) $\kappa = 0.001$ and (b) $\kappa = 0.037$. (c) Arnot tongues for various orders of synchronization. Blue dots and red curves are experimental and numerical results, respectively. Each wh window corresponds to an absolute frequency range from -7 to 7 MHz. The error bars indicate two standard errors.

COLUMBIA University

Vision for Integrated Kerr Comb Source

Realization Integrated Kerr Comb Source

Stern, et al. Gaeta & Lipson, Nature (2018)

Recent work: Shen et al., Kippenberg, Vahala, & Bowers, Nature (2020)

Fully Integrated Comb Generator

Wavelength (nm)

Acknowledgements

Jae Jang Chaitali Joshi Chaitanya Joshi Bok Kim Alexander Klenner Yoshi Yamamoto Mengjie Yu Yun Zhao

<u>Michal Lipson</u> (EE) Brian Stern Xingchen Ji

<u>Ursula Keller (ETH – Zurich)</u> Leonard Krüger Aline Mayer Dominik Waldburger <u>Marko Loncar</u> (Harvard) Rebecca Cheng Cheng Wang Mengjie Yu Mian Zhan

