Welcome to Today's Webinar!

Technical Group Executive Committee

Francisco Imai
Chair of the OSA Color Technical Group

Javier Hernandez-Andres
Universidad de Granada

Manuel Spitschan
University of Oxford

Rigmor C. Baraas
University of South-Eastern Norway

About the Color Technical Group

Our technical group focuses on all aspects related to the physics, physiology, and psychology of color in biological and machine vision.

Our mission is to connect the 900+ members of our community through technical events, webinars, networking events, and social media.

Our past activities have included:

- Special webinar on display calibration
- Vision science in times of social distancing coffee breaks
- Incubator meetings

Connect with our Technical Group

Join our online community to stay up to date on our group's activities. You also can share your ideas for technical group events or let us know if you're interested in presenting your research.

Ways to connect with us:

- Our website at www.osa.org/vc
- On Twitter at \#OSAColorTG
- On LinkedIn at www.linkedin.com/groups/13573604
- Email us at TGactivities@osa.org

Another webinar in 10 days:

OPTORETINOGRAPHY: PAST, PRESENT AND FUTURE

 27 September 2021 • 13:00 EDT (UTC -04:00)Technical Group

COLOR COMMUNICATION THROUGH LEXICAL COLOR CATEGORIES

17 September 2021 • 12:00 EDT (UTC -04:00)

Today's Speakers

Angela M. Brown
Ohio State University

Delwin T. Lindsey
Ohio State University

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8

overview

\qquad

- The color communication game (CCG)
\qquad
- Basic principles of Information Theory the underlie the design and analysis of CCG
- CCG simulation using color naming data only
- English and Somali informants \qquad
- CCG in practice - color choices based in sender names - English and Somali informants \qquad
- Closing remarks
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13

\qquad
\qquad
\qquad
\qquad
\qquad

14

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
16

The constraints on receiver performance

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

17

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Somali language data		English language data
Subjects: non-English speakers		Subjects: University people
Stimuli: Munsell papers		Stimuli: Munsell papers

One-term data*: one term per sample
Terms concatenated into unique composite terms.
Experimentally manipulate the size of the lexicon.
Somali: Sov 2016; Engilis. Sov 2014
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

20

\qquad
\qquad

\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad

22

```
Experiment: naming ("word-for-color"), identification ("color-for-word")
- Each person named each color (word-for-color)
- Then identified colors based on the color terms from themselves or from somebody else (color for-word).
```



```
31 English speakers were tested in groups, i-Pads in linked network.
- First round as "naïve" participants, others in
group provided terms.
- Second round as "experienced" participants.
89 Somali speakers played the game once, against a single other Somali speaker
oresented singly (word-for-color) or in array (color-for-word).
```

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

23

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

25

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

26

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

28

Experience matters.

\qquad
\qquad
\qquad
\qquad

Log2[number of terms], self \qquad
Experience can cause the number of terms to increase, and the MI increases approximately proportionately. \qquad
Again, people don't mostly subdivide the bigger categories until they get close the the theoretical maximum line (where many categories contain one sample). \qquad

29

	Where is information lost?
(Set by the number of terms)	"Best possible" for lexicon $\mathrm{Ml}=\log _{2}[\mathrm{nTerms}$]
Loss ~ 0.6 bits	
(Set by the distribution of terms)	"Selfie:"
	Robot is receiver using the sender's dictionary.
No loss!	
(Same limits as on the selfie)	"Solitaire:"
Somali: 0.45 bits, English: no loss	Human receiver, choosing a sample based on own color messages.
(limited by differences	"Interpersonal:"
among human lexicons) Loss $1.1-1.5$ bits	Human receiver, choosing based on another person's color messages.
(further limited by differences among human lexicons)	Choice succeeds if a sample with the correct color name is chosen

\square

31

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

32

