
Presented by:

Computational Deep Learning 
Microscopy



March 21, 2019
1

The OSA Photonic Detection 
Technical Group Welcomes You!

Speaker: Prof. Yair Rivenson
UCLA



March 21, 2019
2

Committee 2019

Girija Gaur
Chair

Kramer Levin Naftalis & Frankel

Chi Xiong
Events Officer US

IBM

Achyut Dutta
Vice Chair

Founder Banpil Photonics

Shuren Hu
Events Officer US/Asia/EU

GlobalFoundries

Rajan Jha
Events Officer India

IIT Bhubaneswar, India

Gabe Spalding
Member

Illinois Wesleyan University



The Photonic Detection technical group is part of the
Photonics and Opto-Electronics Division of the Optical
Society. This group focuses on the detection of photons as
received from images, data links, and experimental
spectroscopic studies to mention a few. Within its scope,
the PD technical group is involved in the design,
fabrication, and testing of single and arrayed detectors.

This group focuses on materials, architectures, and
readout circuitry needed to transduce photons into
electrical signals and further processing. This group’s
interests include: (1) the integration of lens, cold shields,
and readout electronics into cameras, (2) research into
higher efficiency, lower noise, and/or wavelength
tunability, (3) techniques to mitigate noise and clutter
sources that degrade detector performance, and (4)
camera design, components, and circuitry.

About Us



LinkedIn Group
www.linkedin.com/groups/8297763

Find us online OSA Homepage
www.osa.org/PD

http://www.linkedin.com/groups/8297763
http://www.osa.org/PD


 Special Sessions at OSA conferences such as CLEO and OFC.
 ~4 Webinars for this year!
 Interactions with local sections and student chapters.
 Interactive community for bringing together researchers across inter-

disciplinary fields for tackling advances in photonic detection
technologies.

 Example: Panel discussion on Silicon Photonics for LiDAR and Other
Applications at OFC 2019 which had great turn-out and a lot of interest!

Technical Group Activities



Computational Deep Learning Microscopy

Optica 4, 1437-1443 (2017)
Light Sci. Appl. 7, e17141 (2018)
ACS Photonics (2018), DOI: 10.1021/acsphotonics.8b00146
Nat. Methods 16, 103 (2019)
Nat. Biomed. Eng. 1 (2019). doi:10.1038/s41551-019-0362-y
Light Sci. Appl. 8, 23 (2019)
Light Sci. Appl. 8, 25 (2019)
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Tradeoffs in microscopy

Low 
Photodamage

Temporal resolution 
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Spatial resolution 
(contrast)

Multi-D
z, λ



3

Computational microscopy

• Using a numerical model of the imaging 
system to computationally estimate the 
underlying object model.
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• Reconstruction (dense prediction): 𝑝𝑝 𝒙𝒙 𝒚𝒚

𝑝𝑝 𝒙𝒙 𝒚𝒚 =
𝑝𝑝 𝒚𝒚 𝒙𝒙 𝑝𝑝 𝒚𝒚

𝑝𝑝 𝒙𝒙
• Leads to linear / non-linear estimators:

𝒙𝒙𝑒𝑒 = arg min
𝑥𝑥𝑒𝑒

𝒚𝒚 − 𝐻𝐻𝒙𝒙𝑒𝑒 2
2 + 𝜆𝜆𝜆𝜆(𝒙𝒙𝑒𝑒)

• H – forward operator, measurement model.
• 𝜆𝜆(. ) – Prior information on the object (sparsity, 

non-negativity, support, …). 
• 𝜆𝜆 – Regularization parameter.

Computational microscopy - inverse problems
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Deep convolutional neural network

• Deep convolutional neural network implement 
functions by solving an optimization problem.

𝑓𝑓 𝑦𝑦 = 𝑂𝑂𝑛𝑛𝐴𝐴𝑛𝑛 ��� 𝑂𝑂2𝐴𝐴2 � 𝑂𝑂1𝐴𝐴1𝑦𝑦
• Optimized only once and remains fixed.
• Reconstruction performed in a single feed-forward 

step.
LeCun, Y.,et al., . “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, Nov. 1998.
LeCun, Y., Bengio, Y. & Hinton, G.,  “Deep learning,” Nature 521, 436–444 (2015).
Schmidhuber, J., “Deep learning in neural networks: An overview. Neural Netw.,” 61, 85–117 (2015).
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Deep learning microscopy

• Works with standard microscope hardware.
• Towards real time performance,
• Do not use forward models.

40×/0.95NA image 100×/1.4NA image∆𝑥𝑥 ≈ 𝜆𝜆/(2𝑁𝑁𝐴𝐴)
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Supervised deep network training

• 40×/0.95NA tissue section images matched to 
100×/1.4NA  tissue section images 
(brightfield microscopy).

𝑙𝑙(Θ)
= 𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌𝐻𝐻𝐻𝐻 ,𝑓𝑓 𝑌𝑌𝐿𝐿𝐻𝐻;Θ ) +
𝜆𝜆 𝛻𝛻𝑓𝑓 𝑌𝑌𝐿𝐿𝐻𝐻Θ 2

Cost function
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Supervised deep network training

• 40×/0.95NA tissue section images matched to 
100×/1.4NA  tissue section images 
(brightfield microscopy).

𝑙𝑙(Θ)
= 𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌𝐻𝐻𝐻𝐻 ,𝑓𝑓 𝑌𝑌𝐿𝐿𝐻𝐻;Θ ) +
𝜆𝜆 𝛻𝛻𝑓𝑓 𝑌𝑌𝐿𝐿𝐻𝐻Θ 2

Cost function
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Convolutional filtering

• Filter size (throughout the network) – 3×3

𝑣𝑣𝑖𝑖,𝑗𝑗
𝑘𝑘,𝑙𝑙 = �

𝑟𝑟

�
𝑝𝑝

�
𝑞𝑞

𝑤𝑤𝑖𝑖,𝑗𝑗,𝑟𝑟
𝑝𝑝,𝑞𝑞 𝑣𝑣𝑖𝑖−𝑞𝑞,𝑗𝑗

𝑘𝑘+𝑝𝑝,𝑙𝑙+𝑞𝑞 + 𝑏𝑏𝑖𝑖,𝑗𝑗

• Activation function – Rectified Linear Unit -
ReLU(x) = max(0,x)

• Number of learnable parameters ~ 230K 
• Number of layers = 13
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Implementation details

• Preprocessing – before training, the low 
resolution and high resolution images were 
accurately registered. 

• Training time ~ 4.5 hours (630 epochs)–
• 9,536 patches (60×60 pixels)  (150×150 pixels).

• Inference time < 1 sec on a dual GPU laptop 
for a 40× objective field-of-view.

Rivenson, Y., et al., "Deep learning microscopy," Optica 4, 1437-1443 (2017)
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Resolution enhancement

Network input 
40×/0.95NA Network output Network output 

×2
Network input 
100×/1.4NA Network output

• The image is enhanced while keeping the 
original field-of-view (>6-fold the field-of-view 
of the 100x objective).

Rivenson, Y., et al., "Deep learning microscopy," Optica 4, 1437-1443 (2017)
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d𝑒𝑒𝑝𝑝𝑒𝑒𝑒 𝑜𝑜𝑓𝑓 𝑓𝑓𝑓𝑓𝑒𝑒𝑙𝑙𝑓𝑓 ≈ 𝜆𝜆/𝑁𝑁𝐴𝐴2

Extended depth-of-field and cross-tissue

• Trained on lung tissue, inferred on kidney 
tissue (same stain).

Network input 
40×/0.95NA Network output

Network output 
×2

Extended depth-
of-field image 
(100×/1.4NA) 

Z-stack
100×/1.4NA –
0.4µm step size



13

d𝑒𝑒𝑝𝑝𝑒𝑒𝑒 𝑜𝑜𝑓𝑓 𝑓𝑓𝑓𝑓𝑒𝑒𝑙𝑙𝑓𝑓 ≈ 𝜆𝜆/𝑁𝑁𝐴𝐴2

Extended depth-of-field and cross-tissue

• Trained on lung tissue, inferred on kidney 
tissue (same stain).

Network input 
40×/0.95NA Network output

Network output 
×2

Extended depth-
of-field image 
(100×/1.4NA) 

Z-stack
100×/1.4NA –
0.4µm step size

Network input - 40×/0.95NA

1µm
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Extended depth-of-field and cross-tissue

• Trained on lung tissue, inferred on kidney 
tissue (same stain).

Network input 
40×/0.95NA Network output

Network output 
×2

Extended depth-
of-field image 
(100×/1.4NA) 

Z-stack
100×/1.4NA –
0.4µm step size

Network output ×2

1µm
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Extended depth-of-field and cross-tissue

• Trained on lung tissue, inferred on kidney 
tissue (same stain).

Network input 
40×/0.95NA Network output

Network output 
×2

Extended depth-
of-field image 
(100×/1.4NA) 

Z-stack
100×/1.4NA –
0.4µm step size

Z-stack (100×/1.4NA): Δ𝑧𝑧 = 0.4𝜇𝜇𝜇𝜇

1µmZ1

Z2

Z3

Z4
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Extended depth-of-field and cross-tissue

• Trained on lung tissue, inferred on kidney 
tissue (same stain).

Network input 
40×/0.95NA Network output

Network output 
×2

Extended depth-
of-field image 
(100×/1.4NA) 

Z-stack
100×/1.4NA –
0.4µm step size

Extended depth-of-field image (100×/1.4NA) 

1µm
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Cross tissue and cross staining

Network input 
40×/0.95NA

Output of the 
network trained 
on H&E stained 

breast tissue

• Trained on lung tissue, inferred on breast 
tissue, with different stain.

×2 output of the 
network trained 
on H&E stained 

breast tissue

Output of the 
network trained 

on Masson’s 
trichrome stained 

lung tissue

×2 output of the 
network trained 

on Masson’s 
trichrome stained 

lung tissue
Ground truth 
(100×/1.4NA) 
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• Network trained with lung tissue.

Modulation transfer function estimation



DEEP LEARNING ENHANCED 
MOBILE-PHONE MICROSCOPY

19
Rivenson, Y., et al., “Deep learning enhanced mobile-phone microscopy,” ACS Photonics (2018), DOI: 
10.1021/acsphotonics.8b00146
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Resolution ~ 0.87µm (half pitch)
FOV ~ 1mm2
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Challenges in mobile microscopy

• Main challenge: keep the 
design cost-effective and 
portable.
• Non-optimized, often battery 

powered illumination.
• Spectral distortions.
• SNR due to the pixel size.
• Spatial aberrations.
• Lack of mechanical stability.

Smartphone microscope

Benchtop microscope (20×/0.75NA)



22𝑙𝑙(Θ) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑌𝑌𝐻𝐻𝐻𝐻 ,𝑓𝑓 𝑌𝑌𝐿𝐿𝐻𝐻;Θ ) + 𝜆𝜆 𝛻𝛻𝑓𝑓 𝑌𝑌𝐿𝐿𝐻𝐻;Θ 2)Loss function:
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Elastic pyramid registration

Benchtop microscope (20×/0.75NA)

20µm
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Elastic pyramid registration

Smartphone microscope

20µm
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Elastic pyramid registration

Distortion aligned benchtop microscope image

20µm



Smartphone microscope Network output Benchtop microscope (20×/0.75NA)

𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀 𝑈𝑈1,𝑈𝑈2 = (2𝜇𝜇1𝜇𝜇2+𝑐𝑐1)(2𝜎𝜎1,2+𝑐𝑐2)
(𝜇𝜇12+𝜇𝜇22+𝑐𝑐1)(𝜎𝜎12+𝜎𝜎22+𝑐𝑐2)

; 𝜇𝜇1;2 = 𝑀𝑀 𝑈𝑈1;2 ; 𝜎𝜎1;2
2 = 𝑀𝑀[ 𝑈𝑈1;2 − 𝜇𝜇1;2

2]; 𝜎𝜎1,2 = 𝑀𝑀[(𝑈𝑈1−𝜇𝜇1)(𝑈𝑈2−𝜇𝜇2)]

𝑐𝑐1, 𝑐𝑐2: 𝑠𝑠𝑒𝑒𝑠𝑠𝑏𝑏𝑓𝑓𝑙𝑙𝑓𝑓𝑧𝑧𝑠𝑠𝑒𝑒𝑓𝑓𝑜𝑜𝑠𝑠 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑠𝑠

Structural similarity ~ 0.9



DEEP LEARNING ACHIEVES SUPER-
RESOLUTION IN FLUORESCENCE 
MICROSCOPY

27
Nat. Methods 16, 103 (2019)

200 nm
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Super-resolution fluorescence microscopy

• Provide unprecedented access to the inner working of cells and 

various biological processes

• Often rely on relatively sophisticated optical setups and extensive 

computational processing of the image data. 

1Leica Microsystems, 2Betzig Lab
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Deep learning enables super-resolution

Purposed deep-learning-based 

approach:

• Network input:   
• Low-resolution image  (i.e., captured with 

low-NA objective)

• Network output: 
• High-resolution image (i.e., captured with 

high-NA objective)

• Data-driven approach: does not 

rely on image formation models

• Extended depth-of-field & 

improved SNR

• Major super-resolution techniques 

introduce extensive photo-toxicity/damage 

to living samples.1

1Eric Betzig: Imaging Life at High Spatiotemporal Resolution
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Training workflow of the neural network 
model
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Fluorescence microscopy super-resolution
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Fluorescence microscopy super-resolution



33

Quantification

Nat. Methods 16, 103 (2019)
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Quantification
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Nat. Methods 16, 103 (2019)
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Imaging SUM159 cells expressing eGFP labeled 
clathrin adaptor AP2: TIRF  TIRF-SIM imaging
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Error analysis with NanoJ-Squirrel toolbox1

• Minimum differences was observed 
between the network output and the 
ground truth images.

1Culley, S. et al. Nat. Methods 15, 263–266 (2018).
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Spatial frequency spectrum analysis
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Spatially-varying PSFs measured by neural 
network
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Network inferred image has extended depth-
of-field



40

Network inferred image has higher SNR
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Generalization to new types of samples



DEEP LEARNING-BASED VIRTUAL 
HISTOLOGY STAINING USING AUTO-
FLUORESCENCE OF LABEL-FREE TISSUE

42
Nat. Biomed. Eng. 1 (2019). doi:10.1038/s41551-019-0362-y

25 µm

Auto-fluorescence of 
label free tissue section Virtual histochemical stain
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Histopathology

• Histopathology is the diagnosis and study of 
diseases of the tissues, and involves examining 
tissues and/or cells under a microscope. 

The royal college of pathologists - https://www.rcpath.org/discover-pathology/news/fact-sheets/histopathology.html
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Histological staining

• Histochemistry a technique that is used for the 
visualization of biological structures. 
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Histochemical staining drawbacks

• Laborious process
• Time consuming
• Expensive (reagents, training, personnel, monitoring)
• Doesn't support tissue preservation for advanced 

diagnosis
• Staining variation

https://doi.org/10.1186/1746-1596-6-S1-S15
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Alternative contrasting methods

“Rapid” Staining:
• Acridine orange
• Eosin
Imaging:
• 2PM
• SHG
• UV surface excitation

1. Tao, Y. K. et al. Assessment of breast pathologies using nonlinear microscopy. Proc. Natl. Acad. Sci. 111, 15304–15309
2. Fereidouni, F. et al. Microscopy with ultraviolet surface excitation for rapid slide-free histology. Nat. Biomed. Eng. 1, 957–966 (2017).
3. Tu, H. et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photonics 10, 534–540 (2016).
4. Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering 

microscopy. Nat. Biomed. Eng. 1, 0027 (2017).

1 2

Label free Imaging:
• Autofluorescence – single 

photon, multi-photon
• HHG
• Stimulated Raman scattering 

microscopy
• Quantitative phase microscopy

3 4
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Interpretability

• Costly
• Lack of data

1. Tao, Y. K. et al. Assessment of breast pathologies using nonlinear microscopy. Proc. Natl. Acad. Sci. 111, 15304–15309
2. Fereidouni, F. et al. Microscopy with ultraviolet surface excitation for rapid slide-free histology. Nat. Biomed. Eng. 1, 957–966 (2017).
3. Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering 

microscopy. Nat. Biomed. Eng. 1, 0027 (2017).

1

2

31

2

Based on approximation of 
the intensity as a function of 
the dye concentration

Requires multiple images / 
spectra / rapid staining
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Deep learning-based virtual staining using 
auto-fluorescence of label-free tissue

Rivenson Y., et al. Virtual histological staining of unlabelled tissue autofluorescence images via deep learning. Nat. Biomed. 
Eng. 1 (2019). doi:10.1038/s41551-019-0362-y
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Virtual H&E staining (Salivary gland tissue)
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Virtual Masson’s Trichrome staining (lung tissue)

Contrast enhanced unstained 
tissue auto-fluorescent  image

MT3 virtually stained 
tissue (network output)

Unstained tissue auto-
fluorescent image

MT3 chemically stained 
tissue (brightfield)
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Virtual Jones’ silver staining (kidney tissue)
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Blind assessment by pathologists

• The analysis of 15 tissue section images by 4 board certified pathologists 
(who weren’t aware of the virtual staining technique) demonstrates 100% 
non-major discordance, defined as no clinically significant difference in 
diagnosis between observers. 

Serial number Tissue, 
fixation, 

stain

Pathologist # Histochemically / Virtually stained Diagnosis

1 Ovary, 
Frozen 
section, 
H&E

1 VS Adenocarcinoma
2 VS Borderline serous tumor
3 HS Mucinous adenocarcinoma
4 HS Adenocarcinoma, endometrioid

2 Ovary, 
Frozen 
section, 
H&E

1 VS Benign ovary
2 VS Benign ovary
3 HS Normal ovary with corpus luteal cyst
4 HS Normal

3 Salivary 
Gland, 
FFPE, 
H&E

1 VS Benign salivary glands with mild chronic
inflammation

2 VS Benign parotid tissue
3 HS Normal salivary gland
4 HS No histopathologic abnormality

8 Prostate, 
FFPE, 
H&E

1 HS Prostatic adenocarcinoma 3+4
2 HS Prostatic adenocarcinoma 4+3
3 VS Prostatic adenocarcinoma, Gleason pattern 3+4
4 VS HG-PIN with cribiforming vs carcinoma

15 Thyroid, 
FFPE, 
H&E 

1 VS Papillary thyroid carcinoma
2 VS Papillary thyroid ca
3 HS Papillary thyroid carcinoma
4 HS PTC
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Stain quality assessment by pathologists

nuclear detail (ND), cytoplasmic detail (CD) and extracellular fibrosis (EF) and overall stain (SQ) ; 
4 = perfect, 3 = very good, 2 = acceptable, 1 = unacceptable

Tissue #
Pathologist 1 Pathologist 2 Pathologist 3 Average

ND CD EF SQ ND CD EF SQ ND CD EF SQ ND CD EF SQ
1 – HS 3 2 1 1 4 4 3 4 1 1 1 3 2.67 2.33 1.67 2.67
1 - VS 3 3 3 3 3 3 2 3 2 2 3 3 2.67 2.67 2.67 3.00
2 – HS 3 2 4 4 4 4 3 4 1 2 2 2 2.67 2.67 3.00 3.33
2 - VS 3 3 4 4 4 3 3 3 2 2 3 3 3.00 2.67 3.33 3.33
3 – HS 3 3 2 2 3 3 4 3 1 1 1 1 2.33 2.33 2.33 2.00
3 - VS 3 2 1 1 3 3 1 4 1 1 1 1 2.33 2.00 1.00 2.00
4 – HS 3 2 4 4 3 4 4 4 1 2 1 2 2.33 2.67 3.00 3.33
4 - VS 3 3 4 4 4 3 4 4 2 2 3 3 3.00 2.67 3.67 3.67
5 – HS 3 3 4 4 3 3 2 1 1 3 2 2 2.33 3.00 2.67 2.33
5 - VS 3 2 3 3 3 3 4 2 2 1 3 3 2.67 2.00 3.33 2.67
6 – HS 3 2 3 3 4 4 4 3 2 2 2 2 3.00 2.67 3.00 2.67
6 - VS 3 3 4 3 4 3 4 3 1 1 1 1 2.67 2.33 3.00 2.33
7 – HS 3 3 4 4 3 4 4 3 2 1 2 2 2.67 2.67 3.33 3.00
7 - VS 3 2 3 3 4 4 4 3 2 2 3 3 3.00 2.67 3.33 3.00
8 – HS 3 3 4 4 4 4 4 3 1 1 1 1 2.67 2.67 3.00 2.67
8 - VS 3 2 4 4 4 3 4 4 2 2 3 2 3.00 2.33 3.67 3.33
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Staining standardization

Nat. Biomed. Eng. 1 (2019). doi:10.1038/s41551-019-0362-y



DEEP LEARNING BASED HOLOGRAPHIC 
IMAGE RECONSTRUCTION AND PHASE 
RECOVERY

55
Rivenson, Y.*, Zhang, Y. *, Gunaydin, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using 
deep learning in neural networks. Light Sci. Appl. 7, e17141
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Coherent imaging systems

• Coherent illumination interaction with a 
specimen:

𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥, 𝑦𝑦 = 𝐴𝐴0𝑠𝑠 𝑥𝑥,𝑦𝑦 𝑒𝑒−𝑗𝑗𝑗𝑗 𝑥𝑥,𝑦𝑦

• The propagated wave complex field amplitude 
allows us to capture all the information about 
the specimen. 

• Optoelectronic sensors are only sensitive to 
the intensity of light, i.e, phase information 
cannot be directly acquired.
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Phase retrieval via measurement diversity

W. Luo, Y. Zhang, A. Feizi, Z. Gorocs, and A. Ozcan, ”Pixel super-resolution using wavelength scanning,” Light: 
Science & Applications (Nature Publishing Group) (2015)
W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, ”Synthetic aperture based on-chip microscopy,” Light: Science & 
Applications (Nature Publishing Group) (2015)
A. Greenbaum, et al, ”Wide-field Computational Imaging of Pathology Slides using Lensfree On-Chip Microscopy,” 
Science Translational Medicine (AAAS) (2014)
And many others…

Multi-wavelength Multi-angle Axial stack (multi-height)
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Inference results – on chip holographic 
microscopy (Papanicolaou smear)

Hologram

50µm

Free space 
propagation

Amplitude

Phase

Amplitude

Phase

Network
output

Network
inputInput

(single 
hologram)

Axial stack (multi-
height) reconstruction 

from 8 holograms
Amplitude

Phase

20×/0.5NA 
microscope image

50µm

Light Sci. Appl. 7, e17141 (2018)
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Inference results – on chip holographic 
microscopy (Breast tissue section)

Hologram

50µm

Free space 
propagation

Amplitude

Phase

Amplitude

Phase

Network
output

Network
input

Axial stack (multi-
height) reconstruction 

from 8 holograms
Amplitude

Phase

20×/0.5NA 
microscope image

50µm

Input
(single 

hologram)

Light Sci. Appl. 7, e17141 (2018)
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Virtual staining through specimen optical 
path length

Light Sci. Appl. 8, 23 (2019)
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Virtual staining through specimen optical 
path length

Light Sci. Appl. 8, 23 (2019)
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Brightfield Holography

Light Sci. Appl. 8, 25 (2019)
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Cross-modality deep learning brings bright-
field microscopy contrast to holography
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Cross-modality deep learning brings bright-
field microscopy contrast to holography
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3D PSF comparison using 1 μm beads
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Summary – enhanced microscopy 

• Deep learning can substantially enhance microscopic images 
in terms of: 
• Spatial resolution
• Field of view
• Depth of field
• Spectral distortions
• Compression
• Telemedicine
• Towards real time performance
• System characterization 
• Virtual staining
• Virtual propagation

Optica 4, 1437-1443 (2017)
Light Sci. Appl. 7, e17141 (2018)
ACS Photonics (2018), DOI: 10.1021/acsphotonics.8b00146
Nat. Methods 16, 103 (2019)
Nat. Biomed. Eng. 1 (2019). doi:10.1038/s41551-019-0362-y
Light Sci. Appl. 8, 23 (2019)
Light Sci. Appl. 8, 25 (2019)
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