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About Us

The Photonic Detection technical group is part of the
Photonics and Opto-Electronics Division of the Optical
Society. This group focuses on the detection of photons as
received from images, data links, and experimental
spectroscopic studies to mention a few. Within its scope,
the PD technical group is involved in the design,
fabrication, and testing of single and arrayed detectors.

This group focuses on materials, architectures, and
readout circuitry needed to transduce photons into
electrical signals and further processing. This group’s
interests include: (1) the integration of lens, cold shields,
and readout electronics into cameras, (2) research into
higher efficiency, lower noise, and/or wavelength
tunability, (3) techniques to mitigate noise and clutter
sources that degrade detector performance, and (4)
camera design, components, and circuitry.
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This group involves the detection of photons as
received from images, data links, and
experimental spectroscopic studies to mention
a few. Within its scope, it is involved in the
design, fabrication, testing of single and arrayed
detectors. Detector materials, structures, and
readout circuitry needed to translate photons
into electrical signals are considered by this
group. Also included in this group is the

Fiber Optics Technology (PF) integration of components such as lens, cold shields, and readout electronics into
cameras. Research into higher efficiency, lower noise, and/or wavelength tunability is
included here. Additionally, technigues to mitigate noise and clutter sources that

Laser Systems (PL) degrade detector performance are within the purview of this group. In the imaging area,
camera design, componentry, and circuitry are considered. R
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Technical Group Activities

Special Sessions at OSA conferences such as CLEO and OFC.

~4 Webinars for this year!

Interactions with local sections and student chapters.

Interactive community for bringing together researchers across inter-
disciplinary fields for tackling advances in photonic detection
technologies.

Example: Panel discussion on Silicon Photonics for LiDAR and Other
Applications at OFC 2019 which had great turn-out and a lot of interest!
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Tradeoffs in microscopy

Spatial resolution
(contrast)

Multi-D
Z,

Low Temporal resolution
Photodamage (speed)



I Computational microscopy

e Using a numerical model of the imaging
system to computationally estimate the
underlying object model.



I Computational microscopy - inverse problems

e Reconstruction (dense prediction): p(x|y)

b (xly) = p(y[x)p(y)
p(x)

e Leads to linear / non-linear estimators:
x, = argmin|ly — Hx,|l7 + A¢(x.)
e

e H—forward operator, measurement model.

e ¢(.)— Prior information on the object (sparsity,
non-negativity, support, ...).

e A —Regularization parameter.



Deep convolutional neural network
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e Deep convolutional neural network implement
functions by solving an optimization problem.

f(y) = Opdy - 024, - 0141y
e Optimized only once and remains fixed.

e Reconstruction performed in a single feed-forward
step.

LeCun, Y. et al,, . “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, Nov. 1998.
LeCun, Y., Bengio, Y. & Hinton, G., “Deep learning,” Nature 521, 436-444 (2015).
Schmidhuber, J., “Deep learning in neural networks: An overview. Neural Netw.,” 61, 85-117 (2015).



Deep learning microscopy

Network input Network output

N pixels
NxL pixels

N pixels NxL pixels

40%/0.95NA image Ax =~ 1/(2NA) 100x/1.4ANA image
e Works with standard microscope hardware.
e Towards real time performance,
e Do not use forward models.



Supervised deep network training

Network outputs Training labels

MxL pixels
MxL pixels

Deep CNN
under training

MXL pixels
MxL pixels

MXxL pixels MXxL pixels

Cost function

Backpropagtion

C . 1(0)
Minimize network’s = MSE(YHR, f(YIR; ©)) +
loss function A(Vf(riRe))*

e 40X /0.95NA tissue section images matched to
100%/1.4NA tissue section images
(brightfield microscopy).
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Filter size (throughout the network) — 3x3

p.q k+p l+q
= 22 2
Actlvatlon functlon Rectified Linear Unit -
ReLU(x) = max(0,x)
>+ Number of learnable parameters ~ 230K
> e Number of layers = 13

Convolutional filtering



I Implementation details

e Preprocessing — before training, the low
resolution and high resolution images were
accurately registered.

e Training time ~ 4.5 hours (630 epochs)—
* 9,536 patches (60x60 pixels) = (150x150 pixels).

e Inference time < 1 sec on a dual GPU laptop
for a 40X objective field-of-view.

Rivenson, Y., et al., "Deep learning microscopy," Optica 4, 1437-1443 (2017) 10



Resolution enhancement

Network input
40x/0.95NA

Network output Network input

Net_work output %2 100x/1.4NA

Network output

. The irﬁage IS enhénced whfle keeping fhe
original field-of-view (>6-fold the field-of-view
of the 100x objective).

Rivenson, Y., et al., "Deep learning microscopy," Optica 4, 1437-1443 (2017)

11



Extended depth-of-field and cross-tissue

depth of field ~ A/NA?

e Trained on lung tissue, inferred on kidney
tissue (same stain).
Extended depth-

Network input Network output of-field image
40%/0.95NA Network output X2 (100x/1.4NA)

Al Y ' | ; \‘ :

Z-stack

100x/1.4NA -

12



Network input - 40x/0.95NA




Network output x?2




Z-stack (100x/1.4NA): Az = 0.4um




Extended depth-of-field image (100x/1.4NA)




Cross tissue and cross staining

e Trained on lung tissue, inferred on breast
tissue, with different stain.

Output of the %2 output of the
Outputofthe ~ X2 outputofthe  network trained  network trained

network trained ~ networktrained  on Masson’s on Masson’s
Network input ~ on H&E stained On H&E stained  trichrome stained trichrome stained ~ Ground truth

40%/0.95NA breast tissue breast tissue lung tissue lung tissue (100%/1.4NA)

1' ‘l ¢

17



Modulation transfer function estimation

e Network trained with lung tissue.

Network input Zoom-in: Network input ~ Zoom-in: Network output
(100x/1.4NA) (100x/1.4NA) (100%/1.4NA)
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DEEP LEARNING ENHANCED
MOBILE-PHONE MICROSCOPY

Rivenson, Y., et al., “Deep learning enhanced mobile-phone microscopy,” ACS Photonics (2018), DOI:

10.1021/acsphotonics.8b00146

19



Smartphone

External lens
Knob to adjust focus

X-y stage JL

Batteries

Sample tray

Diffusers

Ring LED
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Resolution ~ 0.87um (half pitch)

FOV ~ 1mm?
20



Challenges in mobile microscopy

Smartphone microscope

e Main challenge: keep the
design cost-effective and
portable.

* Non-optimized, often battery
powered illumination.

*

Benchtop microscope (20x/0.75NA)

e Spectral distortions.
* SNR due to the pixel size.

» Spatial aberrations.
* Lack of mechanical stability.

21
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Elastic pyramid registration

Benchtop microscope (20%/0.75NA)

23



Elastic pyramid registration

Smartphone microscope

24



Elastic pyramid registration

Distortion aligned benchtop microscope image

25



Smartphone microscope Network output Benchtop microscope (20x/0.75NA)

®-

Structural similarity ~ 0.9
2 +c1)(204 2+ 2
SSIM(U,Up) = (itaiiz +€1)(2012+¢2) y U122 = E[Ul;z]; 012;2 = E[(U1;2 —ﬂl;z) I; 012 = E[(Uy—u1)(Uz—us)]

(Ui +us+cq) (07 +o5+c3)’
c1,Cy: stabilization parameters
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DEEP LEARNING ACHIEVES SUPER-
RESOLUTION IN FLUORESCENCE
MICROSCOPY

Nat. Methods 16, 103 (2019)
27



Super-resolution fluorescence microscopy

Confocal

* Provide unprecedented access to the inner working of cells and

various biological processes

« Often rely on relatively sophisticated optical setups and extensive

computational processing of the image data.

L eica Microsystems, ?Betzig Lab 28



Deep learning enables super-resolution

reported
resolution

L. Schermelleh, R. Heintzmann, J. Cell Biol. (2010) (nm)

xy: 20 nm

xyz: 30 nm

xy: 20 nm

xy: 10 nm,
z: 20 nm

xy: 100 nm

xy: 100 nm,

z: 370 nm

photon
increase
req'd

100

| intensity | acquisition

(W/em?) | time (sec)

Purposed deep-learning-based

approach:

Network input:

¢ Low-resolution image (i.e., captured with

low-NA objective)

* Network output:

e High-resolution image (i.e., captured with

» Major super-resolution techniques high-NA objective)

introduce extensive photo-toxicity/damage

to living samples.!

Data-driven approach: does not

rely on image formation models

* Extended depth-of-field &
improved SNR

'Eric Betzig: Imaging Life at High Spatiotemporal Resolution

29



Training workflow of the neural network
model

Generator — Discriminator
Network G Network D

-~ Pixel-wise loss [M°F

[SSTM + Adversarial loss 121 Combined loss:
TG Discriminator loss L, _— L = 12 + AYSE +vis™

A4

Accurately registered to oy
sub-pixel accuracy Critical!

30



Fluorescence microscopy super-resolution

Network input (10x/0.4NA)  Network output (10x/0.4NA)  Ground truth (20%/0.75NA)
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Quantification

Network input (100x/1.4NA, confocal) Network output (100%/1.4NA, confocal) Ground truth (100%/1.4NA, STED)

2000 nm 0

I 300_nm

I
[
]
-
[
[
d

Nat. Methods 16, 103 (2019)



Quantification

Network input (100x/1.

Count

Count

Count

40

20

60

40

20

60

40

20

Network input (confocal)

1.4NA, STED)

Network output (confocal)

Ground truth (STED)

50 100 150 200 250 300 350 400
FWHM of PSF (nm)

Nat. Methods 16, 103 (2019)
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Imaging SUM159 cells expressing eGFP labeled
clathrin adaptor AP2: TIRF = TIRF-SIM imaging

Network input (TIRF) Network output (TIRF) Ground truth (TIRF-SIM)

00mO00s 00mO00s 00mO00s

5pm
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" " 3 v 4
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Error analysis with NanoJ-Squirrel toolbox?

 Minimum differences was observed
between the network output and the
ground truth images.

Error map (input vs. output) Error map (input vs. ground truth)

RSP = 0.999 RSP = 0.998

Network output + RSE = 0.912 RSE = 1.509

ICulley, S. et al. Nat. Methods 15, 263—266 (2018). 36



Frequency spectrum

Spatial frequency spectrum analysis

Network input Network output Ground truth
(10%/0.4NA) (10%/0.4NA) (20%/0.75NA)
—_ r g _— o £ Ay 16 - )
_ 7 14 14 — network input
i | — network output
12} ground truth

Image intensity

6
4
2
0
10
9
8
) 7
)
2 6
o)) 5 O ' : : :
2 s 0 500 1000 1500 2000
8 Spatial frequency (cycles/mm)
2
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Spatially-varying PSFs measured by neural
network

Deconvolved with Deconvolved with
network output ground truth
(b) PSF of ROI1 (e) PSF of ROI1

network output image (from confocal)




Network inferred image has extended depth-
of-field

Network input (10%/0.4NA) Network output (10%/0.4NA) Ground truth (20%/0.75NA) EDOF image (20%/0.75NA)

Synthesized from a z-stack of 34

Green and arrows point to features that images with 0.3 pm spacing
demonstrate effect.

39



Network inferred image has higher SNR

Network input (Confocal) Network output (Confocal) Ground truth (STED

135

130

SNR = 13.66 SNR = 15.64 SNR = 12.11 200 nm

40



Generalization to new types of samples

: Glomeruli and . . . .
F_actin in BPAEC Melanoma cells in convoluted tubdles in a Mitochondria in Blood vessel in Actin in a mouse

mouse brain tumor : BPAEC mouse brain tumor kidney

Network input
(10x/0.4NA)

Network output
(10x/0.4NA)

Ground truth
(20%/0.75NA)




Auto-fluorescence of
label free tissue section Virtual histochemical stain
i I —

DEEP LEARNING-BASED VIRTUAL
HISTOLOGY STAINING USING AUTO-
FLUORESCENCE OF LABEL-FREE TISSUE

Nat. Biomed. Eng. 1 (2019). d0i:10.1038/s41551-019-0362-y

42



Histopathology

e Histopathology is the diagnosis and study of
diseases of the tissues, and involves examining
tissues and/or cells under a microscope.

The royal college of pathologists - https://www.rcpath.org/discover-pathology/news/fact-sheets/histopathology.html

43



Histological staining

e Histochemistry a technique that is used for the
visualization of biological structures.

:’} ; 1 mm
Microscope imaging
(brightfield)

44
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Histochemical staining drawbacks

e Laborious process

e Time consuming

e Expensive (reagents, training, personnel, monitoring)

e Doesn't support tissue preservation for advanced
diagnosis

e Staining variation

https://doi.org/10.1186/1746-1596-6-S1-S15

45
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Alternative contrasting methods

“Rapid” Staining: Label free Imaging:

e Acridine orange e Autofluorescence —single

e  Eosin photon, multi-photon
Imaging: * HHG

e 2PM e  Stimulated Raman scattering
e  SHG microscopy

Quantitative phase microscopy

o UV surface excitation

Fereidouni, F. et al. Microscopy with ultraviolet surface excitation for rapid slide-free histology. Nat. Biomed. Eng. 1, 957-966 (2017).
Tu, H. et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photonics 10, 534-540 (2016).

Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering
microscopy. Nat. Biomed. Eng. 1, 0027 (2017).

46



g

Interpretability

Based on approximation of
the intensity as a function of
the dye concentration

e Costly
e Lack of data

bl O 2 o

. Requires multiple images /
.= spectra/ rapid staining

Tao, Y. K. et al. Assessment of breast pathologies using nonlinear microscopy. Proc. Natl. Acad. Sci. 111, 15304-15309
Fereidouni, F. et al. Microscopy with ultraviolet surface excitation for rapid slide-free histology. Nat. Biomed. Eng. 1, 957-966 (2017).

Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering
microscopy. Nat. Biomed. Eng. 1, 0027 (2017). 47



Deep learning-based virtual staining using
auto-fluorescence of label-free tissue

= CO0~
SN / - ’
A . HG ‘F
Y (¢] Ny W —
[ 5 g

_ Microscope imaging
(brightfield)

Rivenson Y., et al. Virtual histological staining of unlabelled tissue autofluorescence images via deep learning. Nat. Biomed.
48

Eng. 1 (2019). doi:10.1038/s41551-019-0362-y



Virtual H&E staining (Salivary gland tissue)

Contrast enhanced unstained Unstained salivary gland H&E virtually stained salivary ~ H&E histologically stained
tissue DAPI image tissue DAPI image (network gland tissue (network output) salivary gland tissue

._ ey AR | e




Virtual Masson’s Trichrome staining (lung tissue)

Contrast enhanced unstained Unstained tissue auto- MT3 virtually stained MT3 chemically stained
tissue auto-fluorescent image fluorescent image tissue (network output) tissue (brightfield)
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Virtual Jones’ silver staining (kidney tissue)

Contrast enhanced unstained ~ Unstained tissue DAPI image H&E virtually stained tissue
tissue DAPI image (network input) (network output)

b “LA‘j;. J; “. s ‘. 2 '6‘ h
¢ '-‘ 3 < Q‘ .

Jones Silver stained tissue




Blind assessment by pathologists

Serial number Tissue, Pathologist # Histochemically / Virtually stained Diagnosis
fixation,
stain
1 Ovary, 1 VS Adenocarcinoma
Frozen 2 VS Borderline serous tumor
section, 3 HS Mucinous adenocarcinoma
H&E 4 HS Adenocarcinoma, endometrioid
2 Ovary, 1 VS Benign ovary
Frozen 2 VS Benign ovary
section, 3 HS Normal ovary with corpus luteal cyst
H&E 4 HS Normal
3 Salivary 1 VS Benign salivary glands with mild chronic
Gland, inflammation
FFPE, 2 VS Benign parotid tissue
H&E 3 HS Normal salivary gland
4 HS No histopathologic abnormality
8 Prostate, 1 HS Prostatic adenocarcinoma 3+4
FFPE, 2 HS Prostatic adenocarcinoma 4+3
H&E 3 VS Prostatic adenocarcinoma, Gleason pattern 3+4
4 VS HG-PIN with cribiforming vs carcinoma
15 Thyroid, 1 VS Papillary thyroid carcinoma
FFPE, 2 VS Papillary thyroid ca
H&E 3 HS Papillary thyroid carcinoma
4 HS PTC

e The analysis of 15 tissue section images by 4 board certified pathologists
(who weren’t aware of the virtual staining technique) demonstrates 100%
non-major discordance, defined as no clinically significant difference in
diagnosis between observers.




Stain quality assessment by pathologists

Pathologist 1 Pathologist 2 Pathologist 3 Average

Tissue #

ND | CD| EF [ SQ|ND|CD | EF | SQ [ND |[CD | EF | SQ | ND | CD | EF | SQ
1-HS | 3 2 1 1 4 4 3 4 1 1 1 3 |2.67|233|1.67]|2.67
1-VS | 3 3 3 3 3 3 2 3 2 2 3 3 |2.67]|2.67|2.67|3.00
2-HS | 3 2 4 4 4 4 3 4 1 2 2 2 |2.67)|2.67(3.00|3.33
2-VS | 3 3 4 4 4 3 3 3 2 2 3 3 |3.00|2.67|3.33|3.33
3-HS | 3 3 2 2 3 3 4 3 1 1 1 1 12.33|2.33(2.33|2.00
3-VS | 3 2 1 1 3 3 1 4 1 1 1 1 (2.33|2.00(1.00|2.00
4-HS | 3 2 4 4 3 4 4 4 1 2 1 2 |2.33|2.67|3.00(3.33
4-VS | 3 3 4 4 4 3 4 4 2 2 3 3 |3.00|2.67|3.67|3.67
5-HS | 3 3 4 4 3 3 2 1 1 3 2 2 |2.33|3.00|2.67|2.33
5-VS | 3 2 3 3 3 3 4 2 2 1 3 3 |2.67]|2.00|3.33|2.67
6-HS | 3 2 3 3 4 4 4 3 2 2 2 2 |3.00|2.67(3.00]|2.67
6-VS | 3 3 4 3 4 3 4 3 1 1 1 1 [(2.67|2.33|3.00|2.33
/-HS | 3 3 4 4 3 4 4 3 2 1 2 2 |2.67]2.67(3.33|3.00
7-VS | 3 2 3 3 4 4 4 3 2 2 3 3 |3.00]|2.67(3.33|3.00
8—HS | 3 3 4 4 4 4 4 3 1 1 1 1 |2.67(2.67|3.00|2.67
8-VS | 3 2 4 4 4 3 4 4 2 2 3 2 |3.00|2.33|3.67|3.33

nuclear detail (ND), cytoplasmic detail (CD) and extracellular fibrosis (EF) and overall stain (SOg ;
4 = perfect, 3 = verv good, 2 = acceptable, 1 = unacceptable 3



Staining standardization

Liver tissue section 1 Liver tissue section 2 Liver tissue section 3

histologically
stained tissue

Virtually stained
tissue

Nat. Biomed. Eng. 1 (2019). doi:10.1038/s41551-019-0362-y

54
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DEEP LEARNING BASED HOLOGRAPHIC
IMAGE RECONSTRUCTION AND PHASE
RECOVERY

Rivenson, Y.”, Zhan gY Gunaydin, H., Teng, D. & Ozcan, A. Phase recovery and holographic image reconstruction using
deeplearnlngl ral networks. LghtS . Appl. 7, 17141 55



I Coherent imaging systems

e Coherent illumination interaction with a
specimen:
Aoue(x,¥) = Apal(x, y)e—jqb(x,y)
e The propagated wave complex field amplitude

allows us to capture all the information about
the specimen.

e Optoelectronic sensors are only sensitive to
the intensity of light, i.e, phase information
cannot be directly acquired.

56



Phase retrieval via measurement diversity

o
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- - - Lens-free holograms

Wavelength scanning range: 10-30 nm Before samplin After sampling
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Multi-wavelength Multi-angle Axial stack (multi-height)

W. Luo, Y. Zhang, A. Feizi, Z. Gorocs, and A. Ozcan, ”Pixel super-resolution using wavelength scanning,” Light:
Science & Applications (Nature Publishing Group) (2015)

W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, ’Synthetic aperture based on-chip microscopy,” Light: Science &
Applications (Nature Publishing Group) (2015)

A. Greenbaum, et al, ”Wide-field Computational Imaging of Pathology Slides using Lensfree On-Chip Microscopy,”
Science Translational Medicine (AAAS) (2014)

And many others... 57



Inference results — on chip holographic

Axial stack (multi-

Inout Network Network height) reconstruction 20x/0.5NA
(sirl?gle input output from 8 holograms microscope image
hologram) Amplitude Amplitude Amplitude

Hologram

P Free space SRS
- propagation g et

Light Sci. Appl. 7, e17141 (2018)

58



Inference results — on chip holographic
microscopy (Breast tissue section

Axial stack (multi-

Inout Network Network height) reconstruction 20x/0.5NA
(sirl?gle input output from 8 holograms microscope image
hologram) Amplitude Amplitude Amplitude

Hologram

" Free space & .
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Light Sci. Appl. 8, 23 (2019)

Virtual staining through specimen optical
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Virtual staining through specimen optical
ath length
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Brightfield Holography

Volumetric Bright-field Mechanical Scanned image stack

sample microscope scan (~ 60 s) (N=81 measurements)
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Holographic Back-propagated Network output
microscope holograms (~ 1 s) (N=1 measurement)

Light Sci. Appl. 8, 25 (2019)
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Cross-modality deep learning brings bright-
field microscopy contrast to holography

Microscope
Back-propagated hologram Network comparison
Hologram (network input) output (20x /0.75NA)
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Cross-modality deep learning brings bright-
field microscopy contrast to holography

Back-propagated hologram Microscope
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3D PSF comparison using 1 um beads
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Summary — enhanced microscopy

e Deep learning can substantially enhance microscopic images
in terms of:
* Spatial resolution
* Field of view
e Depth of field
* Spectral distortions

* Compression

* Telemedicine

* Towards real time performance
* System characterization

e Virtual staining

* Virtual propagation

Optica 4, 1437-1443 (2017)

Light Sci. Appl. 7, e17141 (2018)

ACS Photonics (2018), DOI: 10.1021/acsphotonics.8b00146
Nat. Methods 16, 103 (2019)

Nat. Biomed. Eng. 1 (2019). do0i:10.1038/s41551-019-0362-y
Light Sci. Appl. 8, 23 (2019) 66
Light Sci. Appl. 8, 25 (2019)
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