CONFORMAL OPTICAL COATINGS BY ATOMIC LAYER DEPOSITION

17 August 2021 • 10:00 EDT (UTC -04:00)

OSA Thin Films Technical Group

Thin Films Technical Group Leadership Team

Chair Dr. Jue Wang Corning Incorporated USA wangj3@corning.com

Vice Chair Dr. Anna Sytchkova ENEA - Casaccia Research Centre, Italy anna.sytchkova@enea.it

Chair - Elect Dr. Yi-Jun Jen National Taipei University of Technology jyjun@ntut.edu.tw

Social Media Officer Dr. Selim Elhadj Lawrence Livermore National Laboratory, USA elhadj2@IInl.gov

Event Officer Dr. Xinbin Cheng Tongji University, China chengxb@tongji.edu.cn

Webinar Officer (3D Nanonetwork Materials) Dr. Amirkianoosh (Kiano) Kiani Ontario Tech University, Canada Amirkianoosh.kiani@ontariotechuniversity.ca

Webinar Officer (PVD Based) Dr. Julien Lumeau Institut Fresnel, France julien.lumeau@fresnel.fr

Webinar Officer (ALD Based) Dr. Adriana Szeghalmi Fraunhofer IOF, Germany Adriana.Szeghalmi@iof.fraunhofer.de

About the Thin Film Technical Group

Our mission:

Our recent webinars:

- Environmental stability of PVD coatings
- Surface coatings inhibit infection
- Metasurfaces: new generation building blocks for optics
- Nanoscale multilayers for EUV and X-ray applications

Connect with Thin Film Technical Group

- OSA Website: <u>www.osa.org/ThinFilmsTG</u>
- LinkedIn: www.linkedin.com/groups/4783616
- In Person at OIC 2022 (OSA Optical Interference Coatings Conference) https://www.osa.org/en-us/meetings/topical_meetings/optical_interference_coatings/

Attendees of OIC 2019, New Mexico, USA

Scheduled 19-24 June 2022, Whistler, Canada

Invited Speakers

Mr. Sami Sneck

- Business Executive at Beneq since 2005
- MSc degree in Chemical Engineering in 2001 from Helsinki Univ. of Technol.
- Introduced ALD to jewelry, photovoltaics, optical coatings, and semiconductors

Dr. John Rönn

- ALD for optics and photonics at Beneq
- Ph.D. from Aalto University School of Electrical Engineering in 2019
- Published ALD articles in Nature Communications and ACS Photonics

Conformal Optical Coatings by Atomic Layer Deposition

M.Sc. Sami Sneck & D.Sc. John Rönn July 2nd, 2021

1) Principles of Atomic Layer Deposition (ALD)

2) Batch production of optical coatings

3) Ultra-fast film deposition with spatial ALD

4) Beneq – Home of ALD

Principles of Atomic Layer Deposition (ALD)

, Beled

Atomic Layer Deposition

- A thin film deposition technique based on saturated surface reactions of the precursor and the surface species
- > Precursors released on the surface alternatively
- Process typically in vacuum (~1 mbar) at 70-400°C

Atomic Layer Deposition

- > Surface controlled layer-by-layer growth leads to
 - \checkmark Excellent uniformity
 - ✓ Exceptional conformality
 - ✓ Accurate control of film thickness
 - \checkmark Atomic scale engineering of the film properties

(PVD)

(CVD)

(ALD)

BATCH PRODUCTION OF OPTICAL COATINGS

Bened

Batch production of optical coatings

- Although typical ALD processes suffer from low deposition rates, ALD itself is a highly scalable technology
 - ✓ Throughput can be increased by increasing the batch size
- > Beneq's batch ALD-equipment offer extremely large batches to be coated in a single run

8 m² of high accuracy films with P400A

Batch production of optical coatings

Batch production of optical coatings

 SiO_2

> Optical coatings realized using low-loss materials

2.8

- ✓ Band-pass filters
- ✓ Anti-reflective coatings
- ✓ Highly-reflective coatings

Beled

08/17/2021

- ALD enables film deposition on the most complicated structures and surfaces
- Large 3D shapes, such as optical domes are examples of structures that are very difficult to coat conformally

cube. Glass substrate

attached to each side.

Example: Topless cube

Right: Fitted thickness values (nm) for corresponding sides. Variation < 0.4 %

K. Niiranen *et al.* "Atomic Layer Deposition of conformal Optical Interference Coatingss," in *Optical Interference Coatings Conference (OIC) 2019*, OSA Technical Digest (Optical Society of America, 2019), paper TE.5.

- ALD enables film deposition on the most complicated structures and surfaces
- Large 3D shapes, such as optical domes are examples of structures that are very difficult to coat conformally
- Example: Optical domes

150 (142) mm

- ALD enables film deposition on the most complicated structures and surfaces
- Large 3D shapes, such as optical domes are examples of structures that are very difficult to coat conformally
- Example: Optical domes

150 (142) mm

Bened

08/17/2021

Bened

08/17/2021

> ALD enables atomic scale engineering of the film properties

- One of the key aspects in developing efficient active devices (lasers, amplifiers) e.g., for silicon photonics
- Example: Atomic-layer-deposited Er:Al₂O₃ as a silicon-integrated optical amplifier
- > Erbium-doped Er:Al₂O₃ grown by sequentially depositing Er_2O_3 and Al_2O_3
 - For AI_2O_3 , TMA + Water process For Er_2O_3 , $Er(thd)_3$ + Ozone process

ТМА

 $Er(thd)_3$

Erbium oxide cycle

Step 1: Pulse Er(thd)₃ and purge

 The large size of the Er(thd)₃ molecule prevents close-packing of Er-ions

Step 2: Pulse ozone and purge

• The ozone burns or removes the organic ligands \rightarrow Sub-monolayer of Er₂O₃

> Aluminum oxide cycle

Step 3: Pulse TMA and purge

Step 4: Pulse water and purge

• Sub-monolayer of Er: Al₂O₃ with controlled Er-distribution is deposited

- PL response of Er-doped Al₂O₃ films with varying number of Al₂O₃ cycles in each Al₂O₃-Er₂O₃ supercycle
- \succ The Er-concentration varies from ~0.75 to 9 %
- Peak PL at ~4.5% of Er-ions (=2xAl₂O₃), ~9% (=1xAl₂O₃) doping causes severe quenching

The Er:Al₂O₃ can be readily deposited e.g., on a silicon integrated platform to form the amplifier

Mode distribution in the device

33% power confinement 19% power confinement

Pump at 1480 nm, Stimulate at 1533 nm

ARTICLE

https://doi.org/10.1038/s41467-019-08369-w OPEN

Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides

John Rönn © ¹, Weiwei Zhang © ^{2,3}, Anton Autere © ¹, Xavier Leroux², Lasse Pakarinen¹, Carlos Alonso-Ramos², Antti Säynätjoki^{1,4}, Harri Lipsanen © ¹, Laurent Vivien², Eric Cassan² & Zhipei Sun © ^{1,5}

Rönn, John, et al. "Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides." *Nature communications* 10.1 (2019): 1-9.

Ultra-fast film deposition with spatial ALD

, Beled

Beneq C2R

- Ultra-high deposition rates, up to several micrometers per hour
- Rotary spatial Plasma Enhanced ALD
- Single side coating
- Batch PEALD process for up to 7 pcs of 200 mm wafers
- For lenses and other 3D substrates with thickness up to 30 mm
- > High film thickness uniformity, suitable for optical coating applications
- Can be equipped with a load lock or wafer automation.

Rotary Spatial PEALD

- Substrates are placed on a turn-table and rotated through precursor zone and plasma zone multiple times
- > One revolution equals one ALD cycle
- > High rpm's enable high deposition rates
 - At 200rpm, the cycle time is 0.3s

, Beled

08/17/2021

Beneq C2R

Item	Specification
Batch size	 7 pcs of 200mm wafers 13 pcs of 100mm wafers 384 pcs of 25mm wafers
Process temperature	25 - 200°C
Process pressure	~2 mbar
Substrate orientation	Face up
Substrate loading	 Manual Load lock (wafers only) Transport Module (wafers only)

Beneó

08/17/2021

C2R Precursor Cabinet

- Number of Precursor sources: 4 pcs
 - Heatable, max temperature: 120°C
- Precursor canister volume: 3 liter
- Plasma gas lines: 3 pcs
- Instrumentation (MFCs, valves etc.)
- Ventilation connection and related safety components

C2R in action

Check the <u>video</u> from beneq.com

Rotary Spatial PEALD for optical coatings

Processes for low and high refractive index materials

- SiO₂ from tetraethylsilanediamine (SAM-24)
- TiO₂ from titanium tetraisopropoxide (TTIP)
- Ta₂O₅ from Tris(ethylmethylamido)(tert-butylimido)tantalum (TBTEMT)
- Choose processes which result in dense, amorphous, optically homogenous coatings

> Use low substrate temperatures, for broad substrate compatibility

Also for minimization of CTE-mismatch induced film stress

Characterization Methods

Stoichiometry was determined using RBS of 50nm films

- SIMS was used for detection of residual carbon from precursors and aluminum from plasma electrode
- Optical constants were determined by spectral analysis
 - Films 250-1,000 nm thick on fused silica, analyzed using OptiLayer software
- > Optical loss at 1064 nm wavelength determined using a laser ring-down technique
- Surface roughness measured using a Zygo 5500 Heterodyne profilometer
- Conformality determined by cross-section SEM imaging of coated trenches in silicon

In collaboration with

Analytical Results – RBS and SIMS

	Metal: Oxygen ratio	Ideal	Residual Carbon	Residual Aluminum
SiO ₂	0.46	0.5	< 0.1%	0.3%
TiO ₂	0.50	0.5	2.5%	0.3%
Ta ₂ O ₅	0.37	0.4	2.0%	1.0%

> Near ideal stoichiometry for TiO₂, slightly oxygen rich for SiO₂ and Ta₂O₅

Al concentration shows inverse relationship with rotation speed when using plasma electrode made of Aluminum (can be eliminated by using Titanium electrode)

Optical Properties

applied technology

Cut The

Surface Roughness

	Film Thickness	RMS Roughness	Peak-Valley Roughness
SiO ₂	1,000 nm	0.8 Å	5.5 Å
TiO ₂	240 nm	0.6 Å	4.0 Å
Ta ₂ O ₅	250 nm	0.5 Å	2.9 Å

• Films Deposited on 1/4" thick "Super Polished" fused silica substrate (pre-characterized)

In collaboration with

Conformality Measurement

Ta2O5 Deposited at 150 RPM

- Silicon substrates prepared using "Bosch" Deep Reactive Ion Etch to mill trenches
 - Nominally 5-7 μ wide by \sim 120 μ deep

In collaboration with

, Beled

08/17/2021

Conformality Results

Compare the coating thickness at the bottom and top of trench

In collaboration with

Dalae

08/17/2021

Deposition of an Anti-Reflection Coating

> SiO₂ (L) and TiO₂ (H)

- Design: 0.22H + 0.37L + 2.0H + 0.95L
- 85°C for polycarbonate substrate, 90°C for BK7 glass
- Rotation speed of 200 RPM (200 ALD cycles per minute)
- Total deposition time of \sim 18 minutes

- Weighted photopic reflectance of about 0.07% for AR on glass
- R < 0.1% for range of 460nm to 615nm

Preliminary process results from C2R-101 testing at Beneq

AI_2O_3

> Precursors: TMA + O_2 -Plasma

Temp. (°C)	RPM (1/min)	Cycles	Duration (min)	Thickness (nm)	GPC (nm/c)	Growth Rate (nm/h)	Non-Uni. (+/- %)	n
90	50	765	15.3	108.7 ± 3.81	0.142	426.3	1.75	1.617 ± 0.011
120	100	1000	10	134.3 ± 7.59	0.134	805.6	2.82	1.622 ± 0.006
120	200	1000	5	128.64 ± 6.36	0.129	1543.6	2.65	1.614 ± 0.007

SiO_2

Precursors: SAM24 + O₂-Plasma

Temp. (°C)	RPM (1/min)	Cycles	Duration (min)	Thickness (nm)	GPC (nm/c)	Growth Rate (nm/h)	Non-Uni. (+/- %)	n
120	100	1824	18.24	135.3 ± 6.45	0.074	444.9	2.38	1.457 ± 0.001
120	150	1824	12.16	111.3 ± 10.3	0.061	549.4	4.64	1.457 ± 0.001
120	200	1824	9.12	99.8 ± 11.4	0.055	656.8	5.70	1.457 ± 0.003

Ta₂O₅

> Precursors: TBTEMT + O_2 -Plasma

Temp. (°C)	RPM (1/min)	Cycles	Duration (min)	Thickness (nm)	GPC (nm/c)	Growth Rate (nm/h)	Non-Uni. (+/- %)	n
120	100	1100	11.0	94.2 ± 2.06	0.086	513.7	2.06	1.970 ± 0.016
150	150	1100	7.33	82.2 ± 3.16	0.075	672.9	3.16	2.021 ± 0.132
150	200	1100	5.50	74.7 ± 5.60	0.068	814.7	5.60	1.996 ± 0.023

08/17/2021

Beneq C2R - Summary

- Ultra-high deposition rates
- Single side coating
- Enables PEALD advantages in production scale
 - Plasma-enabled materials; low temp SiO₂, SiN...
 - Stress control
 - Lower process temperatures
- For lenses and other 3D substrates with thickness up to 30 mm
- Can be equipped with a load lock or wafer automation.

Beneq – Home of ALD

BENEQ 08/17/2021

BENEQ – HOME OF ALD

> World's leading ALD-dedicated company

- \checkmark 40+ years of ALD expertise
- \checkmark 40+ dedicated ALD-system in operation 24/7
- \checkmark 170+ personnel

BENEQ – HOME OF ALD

Focus on

- ALD-equipment
- Coating services
- Development services

P400

P800

TFS 200

Bened

08/17/2021

BENEQ C2R

BENEQ Transform[™]

BENEQ – HOME OF ALD

- ➤ Focus on
 - ALD-equipment
 - Coating services
 - Development services

Beneó

08/17/2021

BENEQ – HOME OF ALD

- Focus on
 - ALD-equipment
 - Coating services
 - Development services

Beneq[®] is a leading supplier of production and research equipment for atomic layer deposition (ALD), a provider of thin film coating services, and the world's premier manufacturer of thin film electroluminescent (TFEL and TASEL) displays.

www.beneq.com | www.lumineq.com Tel. +358 9 7599 530 info@beneq.com | lumineq@beneq.com firstname.lastname@beneq.com