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Our Technical Group at a Glance
Our Focus

• Physics of linear optical materials, processes, devices, & applications
• 2000 members

Our Mission
• To benefit YOU
• Webinars, social media, publications, technical events, business events, outreach 
• Interested in presenting your research? Have ideas for TG events? Contact us at: 

TGactivities@osa.org. 

Where To Find Us 
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• LinkedIn: https://www.linkedin.com/groups/8113351/
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Dr. Liang Gao is currently an Assistant Professor at
Bioengineering at UCLA. His primary research interests
are multidimensional optical imaging, computational
optical imaging, and biomedical optics.

Dr. Liang Gao is the author of more than 60 peer-
reviewed publications in top-tier journals, such as Nature,
Nature Communications, Science Advances, and PNAS.
He received his BS degree in Physics from Tsinghua
University in 2005 and PhD degree in Applied Physics and
Bioengineering from Rice University in 2011. He is a
recipient of an NSF CAREER award in 2017 and an NIH
MIRA award in 2018.
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Outline

• Plenoptic function of light

• Multidimensional optical bioimaging 

– Image Mapping Spectrometry (𝑥, 𝑦, 𝜆) 

– Ultrafast Compressed Imaging Microscopy (𝑥, 𝑦, 𝑡)

– Light field tomography (𝑥, 𝑦, 𝜃)

• Summary   
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• 𝑥, 𝑦: Spatial coordinates
• 𝜃: Emittance angles 
• λ: Wavelength 
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Plenoptic function of light
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Plenoptic function of light: 
• Spatial information (x, y, z) 
• Spectral information (λ)
• Temporal information (t) 
• Emittance angle (𝜃, 𝜑)
• Polarization (ψ, χ)
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Measurement of a high-dim plenoptic function
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Plenoptic function of light: 
• Spatial information (x, y, z) 
• Spectral information (λ)
• Temporal information (t) 
• Emittance angle (𝜃, 𝜑)
• Polarization (ψ, χ)
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Q1: How to make measurement 
possible?

Q2: How to make measurement 
efficient? 



Enabling technologies

Merge

Microfabrication

High-performance 
computation

Modern detector 
technologies
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Multidimensional 

Optical imaging 
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Outline

• Plenoptic function of light

• Multidimensional optical bioimaging 

– Image Mapping Spectrometry (𝑥, 𝑦, 𝜆) 

– Compressed Ultrafast Microscopy (𝑥, 𝑦, 𝑡)

– Light field tomography (𝑥, 𝑦, 𝜃)

• Summary   
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• 𝑥, 𝑦: Spatial coordinates
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Snapshot hyperspectral imaging

• Motivation

– Need for dynamic spectral imaging 

– Drawbacks of scanning-based hyperspectral imagers
• Low throughput 

• Motion artifacts 
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Problem of direct spectral dispersion

• Crosstalk between spatial and spectral information

9

Spectral dispersion

Object Dispersed image

Prism



Image Mapping Spectrometry (IMS) 

• Principle 
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Mapping mirror
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Optical setup 

11

Input image

J. Biomed. Opt. 16, 056005(2011)



Pupil plane
A “block”Mirror facet

Design of the mapping mirror
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x tilt y tilt 

• Each mirror facet has a two-dimensional (x, y) tilt. 
• The mirror facets are grouped into repetitive “blocks” based on their tilt 

angles. 



Fabrication of the mapping mirror
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The mapping mirror was fabricated on a nano-precision lathe (Nanotech 
250UPL) by raster-fly cutting. 



Photograph image White-light interferometer image

Mapping mirror
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• Substrate size: 25 mm × 25 mm 
• Mirror facet size: 25 mm × 70 μm 



Image Mapping Spectrometer

• Instrument size: 20 inches x 5 inches x 3 inches

• Datacube size: 350 × 350 × 48 (x, y, λ)

• Datacube acquisition rate: up to 7.2 fps

• Spectral range: 460 nm – 700 nm

• Spectral resolution: ~ 7 nm 
15

3D model IMS coupled to a microscope

3 inches

J. Cell. Sci. 125, 4833 (2012)



Hyperspectral imaging of triple-labeled 
bovine pulmonary artery endothelial cells
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RGB image
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Spectral channel images



Real-time hyperspectral imaging
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Spectral unmixing of triple-labeled Hela cells
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[Ca2+] and cAMP signaling in MIN6 cells
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Hyperspectral imaging of [Ca2+] and cAMP 
oscillations in MIN6 cells
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J. Cell. Sci. 125, 4833 (2012)



Hyperspectral retinal imaging in vivo
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Hyperspectral fundus camera

Panchromatic
image 

Reference 
image

Representative spectral channel images

Biomed. Opt. Express 3, 48 (2012)



Hyperspectral imaging of drusen in vivo 
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Biomed. Opt. Express 3, 48 (2012)
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• 𝑥, 𝑦: Spatial coordinates
• 𝜃, 𝜑: Emittance angles 
• λ: Wavelength 



Ultrafast imaging
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Ultrafast bioimaging
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The need for ultrafast imaging at the microscopic 
scale 
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Nanophotonics, 5, 98-110 (2016)



Milestones
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Nature 516, 46-47 (2014)



Streak camera
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• Frame rate up to one trillion fps 

• Problem: 

– 1D imaging only! 



Snapshot ultrafast imaging

• Goal: convert a streak camera to a snapshot 2D 
imaging device  

• Solution: fully open the entrance slit of a streak 
camera

• Problem: spatiotemporal mixing along the temporal 
shearing direction 
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Compressed ultrafast photography (CUP) 
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• Image encoding (operator C)

• Temporal shearing (operator S)

• Spatiotemporal integration (operator T)

• 𝑬(𝒎, 𝒏): optical energy measured at pixel m, n on the detector array 

• 𝑰 𝒙, 𝒚, 𝒕  :Event datacube

• 𝒙, 𝒚: spatial coordinates; 𝒕: time.    

𝐸 𝑚, 𝑛 = 𝑻𝑺𝑪𝐼(𝑥, 𝑦, 𝑡)
x

y

t

x
y

t



Image Reconstruction

• Inverse problem formation: 

– Operator 𝑶 = 𝑻𝑺𝑪

• 𝑻: spatiotemporal integration operator

• 𝑺: temporal shearing operator

• 𝑪: Image encoding operator 

– 𝑬: optical energy

– 𝑰: event datacube

– 𝜷: regularization parameter 

– 𝜱 𝑰 : regularization function (total variation) 

• Solution: Two-Step Iterative Shrinkage/Thresholding (TwIST) algorithm 
31

𝑬

21
arg min{ ( )}

2
E I I− + O



The world’s fastest passive camera tops 100 
billion frames per second
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Reflection

Laser pulse racing

Refraction

Fluorescence

Nature, 516, 74-77 (2014)



Ultrafast compressed imaging microscopy
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Channel outputs: 
𝐸𝐶𝑈𝑃_1 = 𝑻𝑺𝑪𝟏(1 − η)𝐼(𝑥, 𝑦, 𝑡)
𝐸𝐶𝑈𝑃_2 = 𝑻𝑺𝑪𝟐1 − η)𝐼(𝑥, 𝑦, 𝑡)

𝑻: spatiotemporal integration operator
𝑺: temporal shearing operator
𝑪: Image encoding operator, 𝑪𝟏 + 𝑪𝟐 = 𝑱, 
where 𝑱 is a matrix of ones



Fluorescence imaging lifetime microscopy (FLIM)

Conventional scanning-based FLIM

Image Courtesy of PICOQUANT 
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Time-lapse fluorescence decay after pulsed 

excitation (neuron imaging)
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Snapshot lifetime imaging of fluorescence beads

10 𝜇m
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Lifetime (ns)



Dynamic lifetime imaging of bead diffusion at 75 Hz
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Ma, Y., Lee, Y., Best-Popescu, C. & Gao, L. High-speed compressed-sensing 

fluorescence lifetime imaging microscopy of live cells. PNAS 118, e2004176118 (2021)



Lifetime unmixing of double-labeled neurons
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10 µm

Cytoskeleton: Alex 546 and Alex 555

Intensity image Unmixed image

Ma, Y., Lee, Y., Best-Popescu, C. & Gao, L. High-speed compressed-sensing 

fluorescence lifetime imaging microscopy of live cells. PNAS 118, e2004176118 (2021)



Fluorescence signals from neurons labelled with 
MacQ-mOrange2

39



High-speed FLIM of neuron spiking (100 fps) 
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Ma, Y., Lee, Y., Best-Popescu, C. & Gao, L. High-speed compressed-sensing 

fluorescence lifetime imaging microscopy of live cells. PNAS 118, e2004176118 (2021)



Lifetime imaging of fluorescence quenching in 
living tissue

41



Outline

• Plenoptic function of light

• Multidimensional optical bioimaging 

– Image Mapping Spectrometry (𝑥, 𝑦, 𝜆) 

– Ultrafast Compressed Imaging Microscopy(𝑥, 𝑦, 𝑡)

– Light field tomography (𝑥, 𝑦, 𝜃)

• Summary   

42

• 𝑥, 𝑦: Spatial coordinates
• 𝜃, 𝜑: Emittance angles 
• λ: Wavelength 



Light field cameras (𝑥, 𝑦, 𝜃, 𝜑) 
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Microlens 
array Detector 

arrayMain 
lens

New Digital 
Processing

Digital refocusing, 
depth estimation

Volumetric rendering



Data redundance in light field imaging
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Problems to solve: High-speed light field imaging with only a 1D detector array 

Core idea: Reformulate 3D imaging as a sparse-view computed tomography (CT) problem by using 
cylindrical lenses to acquire en-face parallel beam projections of the object. 
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3. Acquisition of multiple projections

If each subfield images the same scene from different 
perspectives, the disparity can be extracted for 
calculating depths. 

4. Calculation of Depths from the light field 

Light-field data readout by a 1D sensor array! 
Full-fledged light field imaging capabilities: numerical 
refocusing, extended depth of field, 3D reconstruction, etc.   

1. Geometric imaging model 

Cylindrical lens array 

Cylindrical 
lens

Light field tomography (LIFT) 



2: PSF substitution

1: Pin-hole model

𝑓 𝑥, 𝑦c

a b

1D sensor

Camera lens
3D scene

Streak camera

Cylindrical lenslet array

Image plane

P2P1 P3

Ultrafast light field tomography (LIFT) 

Xiaohua Feng, Liang Gao, “Ultrafast light field tomography for snapshot transient 
and non-line-of-sight imaging”, Nature Communications, in press (2021) . 
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Xiaohua Feng, Liang Gao, “Ultrafast light field tomography for snapshot transient 
and non-line-of-sight imaging”, Nature Communications, in press (2021) . 

Ultrafast 3D imaging of a laser pulse propagation 
in a helical fiber
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• 𝑥, 𝑦: Spatial coordinates
• 𝜃, 𝜑: Emittance angles 
• λ: Wavelength 



Merge

Microfabrication

High-performance 
computation

Modern detector 
technologies

Summary
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Hyperspectral imaging (𝑥, 𝑦, 𝜆) 

Ultrafast imaging (𝑥, 𝑦, 𝑡)

Light field imaging (𝑥, 𝑦, 𝜃)



Q1 (Dim reduction) Q2 (Sampling)

IMS (𝑥, 𝑦, 𝜆) to (𝑥’, 𝑦’) Nyquist sampling 

CUP (𝑥, 𝑦, 𝑡) to (𝑥’, 𝑦’) Compressed sensing 

LIFT (𝑥, 𝑦, 𝜃) to 𝑥’ Compressed sensing

50

Q1: How to make measurement 
possible?

Q2: How to make measurement 
efficient? 

Summary
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