WE ARE 心N

Engineering Laser Systems for Aerospace & Defense Applications

Nicholas Sawruk, Fibertek, Inc.

The OSA Laser Systems Technical Group Welcomes You!

Technical Group Leadership 2020

Chair **Mark Spencer** Air Force Research Laboratory

Vice Chair **Casey Pellizzari** United States Air Force Academy

Webinar officer Santasri Bose-Pillai Air Force Institute of Technology

Event officer Sara Tucker Ball Aerospace

Social media officer Walid Tawfik Younes Mohamed Cairo University

Event officer Alex Fuerbach Macquarie University

Technical Group at a Glance

Focus

• This group encompasses novel laser system development for a broad range of scientific, industrial, medical, remote sensing and other directed-energy applications.

Mission

- To benefit <u>YOU</u>
- Webinars, e-Presence, publications, technical events, business events, outreach
- Interested in presenting your research? Have ideas for TG events? Contact us at <u>TGLaserSystems@osa.org</u>.

• Find us here

- Website: <u>www.osa.org/LaserSystemsTG</u>
- Facebook: https://www.facebook.com/groups/378463153017808/
- LinkedIn: https://www.linkedin.com/groups/6993076/

Today's Webinar

Engineering Laser Systems for Aerospace and Defense Applications

Nicholas Sawruk

Fibertek, Inc.

Speaker's Short Bio:

Nicholas Sawruk is the Director of Laser & Optical Engineering at Fibertek, Inc. Mr. Sawruk has over 15 years of experience developing, designing, integrating, and testing laser/EO systems. His support experience includes the NASA Ice Cloud and Elevation Satellite laser systems where he served as the principal investigator and program manager of a high reliability laser system for a national asset space satellite. Over his career, Mr. Sawruk developed, matured and delivered state of the art laser systems including chemical, gas, solid state and fiber lasers for a wide range of defense and science sensing missions. He received a bachelors of science degree in Physics and Mathematics from the United States Air Force Academy and a masters of science degree from the University of New Mexico.

ENGINEERING LASERS FOR MILITARY AND SPACE APPLICATIONS

2020 OSA WEBINAR 17 JULY 2020

Nicholas W. Sawruk – Director of Laser & Optical Engineering <u>nsawruk@fibertek.com</u>

FIBERTEK, INC.

13605 Dulles Technology Dr Herndon, VA 20171 (703) 471-7671 www.fibertek.com

Fibertek Active EO Systems for Space & Military Applications

CALIPSO (launched 2006) 12+ years 24/7 operation (3-year design life)

ICESat-2 (launched 2018)

Fibertek has engineered lasers and active E-O systems for space and military applications for ~35 years

Aerospace & Military Applications

Laser-based sensors are critical technologies for military & aerospace missions

Laser Design Drivers

Laser Properties	Military & Aerospace		Industrial & Scientific		
	Motivation	Priority	Motivation	Priority	
Power	Extends range for standoff sensors & effects	High	Increases throughput, yield, etc.	Med	
Efficiency	Platforms have limited power and/or heat dissipation	High	Industrial & commercial applications typically have more available power & thermal capacity	Low	
Reliability	Mission criticality and difficult service & replacement	Highest	Decreases life cycle cost	High	
Compact size	Platforms (esp. air & space) are highly sensitive to size & weight	High	Commercial/industrial applications may be less sensitive to size & weight	Med	
Conduction (or forced air) cooling	Reduces size & weight, compatibility with environments	Med	Frequently able to utilize liquid heat exchangers or chillers	Low	
Cost	Important, after high-priorities are met	Med	Market competition	High	
Mission-specific performance (wavelength, tailored waveforms, etc.)	Leading-edge performance is often required	High	Implementation can often adapt to available technologies to reduce cost, versatility may be favored to expand market access	Low	
Mission-specific environments	Operability is required over a wide range of conditions	High	Users have some control over operating conditions	Med	
Modularity/versatility	Frequently compromised for mission-specific needs	Low	Amplifies return on product development investments	High	

Design priorities for military and aerospace lasers are more driven by reliability, mission performance, environments, and SWaP (size, weight, & power) vs. commercial/industrial lasers.

Mission Enabling Laser System Examples

WALES, the Airborne Demonstrator for a Water Vapor Differential Absorption LIDAR in Space

- 4-λ system at specific & non-standard wavelengths (~935 nm)
- Single frequency Optical Parametric Oscillator
- 45 mJ Energy @ 100 Hz
- >500 hours of airborne operation

Wirth M., et al. The airborne multi-wavelength water vapor differential absorption lidar WALES: system design and performance, Applied Physics B: Lasers and Optics, 2009, 1, 201-213

Aeolus – UV Doppler Wind Lidar Frequency Stabilized, High Energy UV Laser in Space

- Atmospheric wind profiles form the ground to the lower stratosphere on global scale
- 50.5 Hz, >100 mJ, 20 ns @ UV
- 1.9 B shots in 15-months of operation in space

Lux O, Wernham D, Bravetti P, et al. High-power and frequency-stable ultraviolet laser performance in space for the wind lidar on Aeolus. Opt Lett. 2020;45(6):1443-1446. doi:10.1364/OL.387728

NASA GSFC ASCENDS Fiber MOPA for CH₄ & CO₂ Sensing

- Rapidly-tunable single frequency output at specific λ
- 450 μJ , 7.5 kHz and > 20 dB polarization extinction ratio
- Compact & survive the rigors of launch
 & space applications

Mark Stephen, et al., "Fiber-based laser MOPA transmitter packaging for space environment," Proc. SPIE 10513,Components and Packaging for Laser Systems IV, 1051308 (20 February 2018); doi: 10.1117/12.2290720

Examples demonstrate a range of mission specific requirements in terms of wavelength, linewidth & performance in diverse operational environments and all with a priority on minimal SWaP

ICESat-2 (launched 2018) Airborne DIAL

Fibertek Laser System Examples

- Key challenges:
- Precise frequency control in an airborne environment
- Advancing the technology toward space

Pulsed fiber lasers

Key challenges:

- Peak-power (pulse energy) performance
- Component qualification (temperature & radiation)

Key challenge: high-reliability design for

24/7 operation over 3 years & >1 Trillion

>10x shot count of other remote-sensing

laser shots

space lasers

ICESat-2 Laser Transmitter

Example of a high reliability laser transmitter for a 3-year duration space mission.

NASA ICESat-2 Mission Overview Ice Cloud and land Elevation Satellite

- ICESat-2 carries a single instrument the Advanced Topographic Laser Altimeter System (ATLAS).
 - ATLAS measures the travel times of lasers pulses to calculate the distance between the spacecraft and Earth's surface
 - ATLAS carries two redundant lasers, one primary and one backup.
- The four ICESat-2 science objectives are
 - Measure melting ice sheets and investigate how this effects sea level rise
 - Measure and investigate changes in the mass of ice sheets and glaciers
 - Estimate and study sea ice thickness
 - Measure the height of vegetation in forests and other ecosystems worldwide

ICESat-2 Laser Driving Requirements & Resulting Enabling Capability

Parameter	Requirement	Flight Lasers	Enabling Lidar Capability
Energy (µJ)	250-900	250-1,370	Required pulse energy for multi-beam (6x) altimeter per laser
			shot, i.e. single output beam is split into 6 beams providing
			dense cross track sampling required for surface slope
			measurements.
Pulse Rate (kHz)	10	10	Fine ground sampling distance, measurements every 70 cm.
Pulse Width (ns)	1.5	<1.3	Fine height measurement resolution.
Divergence (µrad)	<130	91	<1.5x diffraction limited BQ – Minimal illuminated spot on the
			ground.
Tunable	E22 27+0 01E	E22 27+0 01E	Absolute wavelength tunable to match etalon receiver
Wavelength (nm)	552.27±0.015	552.2710.015	transmission – minimizing background contributions.
Linewidth (pm)	<30	<5	Enables a narrow linewidth receiver filter – minimizing
			background contributions.
Efficiency	>5%	8.2%	High efficiency – reducing spacecraft thermal management &
			power distribution requirements.
Operational Run-	3.5 years	Life test Lasers	Demonstrate reliability required for long duration lidar
Time	(> 1 T shots)	(> 1 T shots)	missions – allows for long term trend measurements. ⁹

ICESat-2 Laser Overview

- Integrated and ruggedized packaging single unit with power and command inputs and 532 nm photons out.
 - 30 cm x 50 cm x 15 cm, 19 kg
 - Flexure mounted laser system with hermitically seal laser module and vented electronics module in a single unit.
- ICESat-2 lasers are State-of-the-Art space qualified lasers simultaneously requiring short pulse width, high average power, frequency tunability, near diffraction limited beam quality and a minimum life-time shot count of 1 Trillion shots.

ICESat-2 mission requires ~3-orders of magnitude more laser shots, with the most stringent wavelength control and temporal pulse width requirements of any NASA spaceflight laser altimeter to date.

ICESat-2 Laser Design Features

- Short, electro-optical Q-Switched oscillator generating key performance:
 - Short pulse widths, diffraction limited BQ, 10 kHz PRF, and wavelength tunable w/ narrow linewidth.

End-Pumped amplifier chain

- Excellent Efficiency (40% Optical to Optical)
- Preserves beam quality (M² ~1.3)
- Enable by high brightness fiber coupled diode • pumps.
- Pulsed-Pumped w/ variable phasing and pump duration
 - Energy tuning from 250 μ J to > 1,000 μ J ٠
 - Constant thermal loading, i.e. minimal changes in beam divergence, pointing, & position.
- High efficiency frequency conversion via critically phased match LBO

1064 nm Master Oscillator Power Amplifier Frequency Doubled to 532 nm

• Wall Plug Efficiency @ Full Energy: >7%

Laser Diode Pump Module Qualification

Diode Life Test (QTY 4 Units)

Component Qualification	Component Certification	Module Certification	Module Qualification	Module Capability Testing		<0.5 % drop in output power over >45,000 hrs & 1.6 trillion shots 1.6 times planned
Qualify component reliability	Lot certification of	100% test & screen of	Qualify a subset of modules to	Capability testing above and		mission life.
and robustness in terms of	components used in module	modules required.	demonstrate reliability and	beyond mission requirements	1	24 3.09
requirements	pot feasible 100% screep and		particular mission	to demonstrate design	2	22
requirements.	select			ina gin.		
	Select.		requirements.		≥ '	2.37
GOAL: Demonstrate	GOAL: Certify all components	GOAL: Certify modules for	GOAL: Demonstrate module			¹⁸ 1 trillion
plausibility the system will	used in flight modules are of	the mission via 100% unit	design is capable of meeting	GOAL: Demonstrate and	er	16 shots 2.09
satisfy mission	the highest quality and free	testing and screening.	the mission environmental	understand the module's		14
environmental and reliability	of anomalies.		and reliability requirements.	headroom above mission	0	12 1.59
requirements.				requirements.	t	10 Driver
					nc	failure
Subset of Components	100% of Components for	100% of Elight Modules	Subset of Certificed	Subset of Qualification	lt,	
for Flight Modules	Flight Modules	100 / 01 Fight modules	Modules	Modules	ы С	
					•	
		Lot Certify if Possible or	Environmental Tests	Test Subset of Modules to		
Radiation Testing	Lot Certify Components	100% Test & Screen	(Vibe, Shock, Thermal, Radiation, etc.)	Failure		0 8
				mission requirements)		$0 \stackrel{i}{} e^{i\theta} e^$
Life Testing	Chiplet Burn-In	Acceptance Level Environmental Tests				
			A test <u>ce</u>	entric diode l	ase	r space certification program
Compliant w/ Operational			- consisting	of several k		nhases including a technology
Environment (high vac,	Pedigree Review	Additional Module Burn-In	COnsisting		⊂y	
etc.)			_ plausibility	y study, co <u>mp</u>	one	ent and LDIVI pedigree reviews,
			and envi	ronmental	rra	ntance was developed and
Chiplet Multicell Testing	Active Component Burn-In	Detailed Pedigree Review				ptance was acveroped and
	(fibers, optics, etc.)	Discarded)	succes <u>stul</u>	ly executed.		
Chiplet Multicell Testing	Active Component Burn-In (fibers, optics, etc.)	Detailed Pedigree Review (Out of Family Modules Discarded)	« successful	ly executed.		plance was acveloped and

This program is well documented & adaptable to future space missions.

N. W. Sawruk, et al, "Space certification and qualification programs for laser diode modules on the NASA ICESat-2 Mission," SPIE 8872, 2013.

Supply Chain Management of Optical Components for Space

- Space qualified optical components are not a commodity, lacking industry accepted standardized processes and/or certification procedures common to electronic components for space applications.
 - Typically small companies with relatively high turn over and consolidation rates complicate reuse of the developed supply chain.
 - Optical component supply chain management is challenging requiring a balance between design updates and maintaining an established process.
- Optical coating technology, lot certification and qualification.
 - Vendor survey & down select based on coating requirements.
- Faraday Rotators compatible with environments were not commercially available.
 - Incompatible materials, not vacuum compatible and not robust to GEVS random vibe.
 - Worked closely with the rotator vendor and collaboratively upgraded the rotator design and executed a qualification program.

D. Poulios, et al, "Performance of multilayer optical coatings under long term 532 nm laser exposure," *Proc. SPIE 8885*, 2013.

Fibertek successfully developed screening procedures and guided designs of key optical components from commercial vendors.

ICESat-2 18-Months Operational Performance

- Laser was initially operated at 600 μ J for several days. The output energy was decreased to 450 μ J due to better than expected signal returns.
- 2.6% drop in 532 nm pulse energy over 18 months of operation is better than anticipated (~2x less than early life test lasers) indicating the contamination mitigation protocols are successful.

FIBERTEK, INC.

Space-Based Laser Lessons Learned

- Mature technologies are required for the rapid advancement of technology readiness levels (TRL) required on recent programs.
- A robust and comprehensive test program, in relevant environments, early in the program surfaces design issues and allows for the implementation of corrective actions.
- Mitigation of contamination sources is a key to long term reliability.
- De-rating the top-level system and sub-systems results in a higher reliability system.
- Process rigor and discipline during all phases (design, procurement, component processing, system integration and test, etc.) of the program are required for consistent high reliability laser systems
 - Culture of building high-reliably and well documented space systems.

Airborne Differential Absorption Lidar Transmitter

Single frequency laser operating at a specific & non-standard wavelength with >1000:1 spectral purity in an airborne environment.

Airborne Differential Absorption Lidar

- Integrated path differential absorption (IPDA) measurement between transmitted energy signal and surface return at on-line (absorbed) and off-line (unabsorbed) wavelengths.
- Combined lidar profiles of water vapor, methane, aerosols and clouds to better understand weather & dynamics.

Nehrir, A. et al., "The High Altitude Lidar Observatory (HALO): A multi-function lidarand technology test-bed for airborne and space-based measurements of water vapor and methane" ESTO Technology Forum, June 2018

Water Vapor DIAL Transmitter

Parameter	Design Value	Enabling Lidar Capability
System Pulse Rate	1.0 kHz	Fast pulse rate required for two subsequent pulses to sample the same air volume from an airborne platform.
935 nm Wavelength	935.685 nm	Wavelength is coincident with a water vapor absorption line. Off-line wavelength is several GHz from the absorption line center.
935 nm Pulse Energy	2.5 mJ	Required pulse energy for airborne ranges, aperture and detector sensitivity.
935 nm Spectral Purity	99.9 %	Transform limited linewidth (40 MHz) and smooth spectral content is required for high resolution (ppm) water vapor measurements.
Temperature	20±10° C	
Altitude	10 kft	Typical research airborne lidar platform operational environment
Vibration	1.5 g _{rms} 10-2,000 Hz	

- The Water Vapor Laser is based on an injection-seeded Nd:YAG master-oscillator power-amplifier architecture operating at a wavelength of 1064 nm.
- This IR radiation is then frequency doubled to 532 nm and used to optically drive an injection-seeded optical parametric oscillator (OPO) operating at the 935 nm water vapor absorption line.

Operation in Airborne Environment

- The primary environmental impact to the performance of the Water Vapor transmitter is optical misalignment induced by vibration.
- Optical misalignment negatively impacted output power, beam pointing, and spectral purity – three parameters fundamental to any absorption lidar system.
- Three major updates mitigated the laser performance degradation while operating under a dynamic environment.
 - Decouple and flexure mount the internal laser cold plate from the laser optical bench.
 - Increase the stiffness of the optical bench increasing the frequency of the first resonator mode from 250 Hz to 365 Hz.
 - Updated laser resonator design with significantly reduced alignment sensitivity.

FIBERTEK, INC.

Key Laser Performance

- The OPO produced a highquality spatial pulse with an M^2 value of <1.2 and maintained a near transform spectral width of ~40 MHz, well within the 70 MHz objective.
- Preliminary airborne flights were successful.

2.5

2.0

Fiber Lasers

Examples of space-qualified laser systems for high bandwidth and long range optical communication.

Fiber Laser Transmitters

- Advantages of Fiber Lasers
 - Spatial confinement → signal brightness is maintained over long distance, improving beam quality
 - Distributed gain → low-gain ions (ytterbium, erbium, & thulium) can achieve significant gain (typically 20-30 dB per stage) with meter-length fibers
 - Distributed heat load → simplified thermal management in comparison to solid-state lasers
 - High efficiency → above advantages lead to deep saturation of lasers and amplifiers, resulting in high efficiency (>40% E-O in Yb:fiber, >20% in Er:fiber or Tm:fiber)
- Disadvantages
 - Nonlinear behavior → spatial confinement leads to accumulated nonlinear behavior (SBS, SRS, FWM, SPM, XPM, etc.)
 - Limited peak power → Fibertek has demonstrated >1 MW peak power in Yb:fiber, but practical limits in fielded systems
 are typically ~50-100 kW
 - Radiation hardness

Tremendous advances have been made in fiber lasers, pushing average power per diffraction-limited aperture to ~3-4 kW for terrestrial – but peak power performance is limited and power and thermal management for space remain a challenge

Examples of TRL-6+ Fiber Lasers for Space

20 W CW 1.5 um fiber amplifier for NASA Ascends

100 W CW 1.9 um Tm:fiber laser will be TRL5+ in 2019. Photo shows housing & components in vibration testing.

A 50 W pulsed 1.5 um fiber amplifier is also being developed for deep space communications, and will use similar packaging.

6 W PPM transmitter for deep-space laser communications 15% E-O efficiency >1 kW peak power

Fibertek has built engineered space-qualifiable fiber laser & amplifier systems at power levels from <1 to >100 W average power, up to 100 kW peak power, CW & pulsed, and at 1 um, 1.5 um, and 2 um wavelengths.

Example: $1.5 \ \mu m$ Fiber MOPA Power

- High power 1.5 μm fiber-laser developed for high bandwidth, wavelength multi-plexed, deep-space optical communication links.
- High-efficiency, high-power performance is consistent with design predictions.
- Results show the same average power performance for a single-channel and multi-channel output, enabling flexible implementation to optimize data rates in deep space.

Component Qualification: Comparison with Telcordia

Environment Specification	Typical Military	Typical Space Flight	Commercial Telecom	Design Considerations		
Reference standard or document	MIL-STD-810G	NASA GEVS	Telcordia			
Temperature	Mission-dependent, -75C to +85 C in extreme cases	Mission-dependent, -20C to 50C is a common survival temp	-40°C/min to +85°C/max	 Adhesives & seals must maintain integrity over temperature CTE-matching for critically-aligned components Actively control temperature-sensitive optics & electronics 		
Thermal shock	~30C/min or greater	<<30 C/min typical	ΔT = 100°C/ sec	Commercial thermal shock (ice & boiling water) for Telcordia components is more severe		
Pressure / Altitude	Up to 70,000 ft.	Vacuum-compatible	NA	Cleanliness of optics, photochemistry, and optical/electrical breakdown all must be considered		
Moisture and humidity	RH ≤ 90%	N/A	RH 85%/85°C	Sealed enclosures may be the most effective remedy		
Random Vibration	>20 gRMS in extreme tactical cases	~14 gRMS (non-operating)	20 g peak	 Survival: mounting & positioning must be maintained through vibe (e.g. space launch) Operational: design to maintain critical alignments & beampointing can be very challenging 		
Radiation	N/A	Mission Dependent Few kRad to MRad	N/A	 Space-rated electronics → expensive, long-lead Space-rated laser optical components don't generally exist → radiation susceptibilitytesting is typical for space-laser programs 		
Military lasers: Space lasers: Design driven significantly by Launch vibration & radiation						

temperature & vibration

Launch vibration & radiation are added design constraints

Commercial standards can be useful in selecting components, but do not represent qualification for most military & space environments

Component Remarks

Active components

Seed laser diodes

- Pre-screening qualification if need
- Qualifiability per design, material, and process
- Typically Telcordia qualified with multiple supplier options

Low-power pump laser diodes

- Mature package design and process
- Typically Telcordia qualified, high reliability device

High power pump laser diodes

- Designed for industrial applications
- Not typically Telcordia qualified
- Some test data for space (performed by suppliers, Fibertek, NASA, and/or others)

Fiber-optic modulators

- Some limited space qualification data from ESA/NASA
- Details of qualification testing is not widely available

Passive components

Fused fiber optic components

- Typically Telcordia-qualified, very high reliability components
- Assuming qualification per similarity is reasonable (similar material, design, and process)

Fiber pigtailed micro-optics components

- Typically Telcordia qualified, high reliability components
- Assuming qualification per similarity is reasonable (similar material, design, and process)

High power high strength fiber splices

- Splice joints are considered as components from viewpoint of reliability
- Splice process must be qualified & applied to fiber-based systems

Radiation: data is very limited on radiation susceptibility of fiber-optic components, and qualification testing is typically required

Rapidly growing utility of fiber lasers in space is leading to a growing catalog of qualified components

- Laser systems and technologies have an enabling role in LIDAR-based remote sensing systems in military and aerospace communities.
- Lasers for aerospace applications pose a unique set of challenges including harsh environments, limited volumes, power and thermal capacity of platforms.
- Several examples of lasers transitioned from the lab to operational environments were presented enabling new capabilities in lidar and communication systems. 27