Localized states in nonlinear topological photonics

Daria Smirnova

Nonlinear Physics Center, Australian National University

November 2021

OSA Webinar - Nonlinear Optics Technical Group

online

Acknowledgements

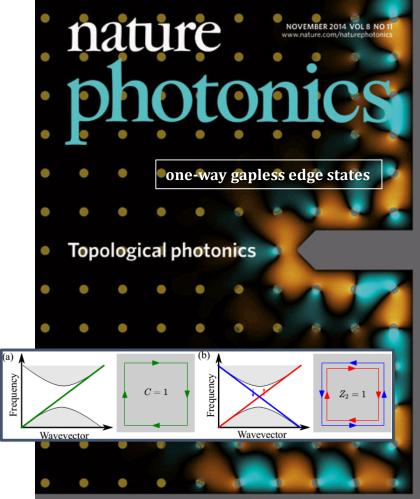
Prof. Yuri Kivshar

Australian National University

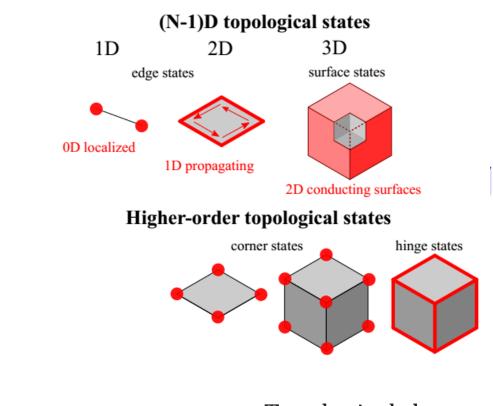
Prof. Alexander Khanikaev

Dr. Daniel Leykam

Topological photonics

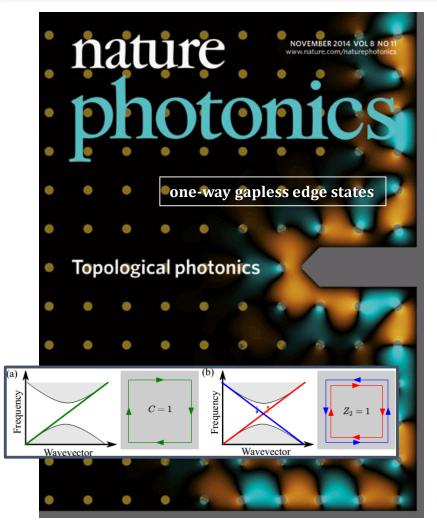


Lu et al, Nature Photonics **8**, 821 (2014) Ozawa et al, Rev. Mod. Phys. **91**, 015006 (2019)



Topological classes in different dimensions

Topological Photonics goes Nonlinear

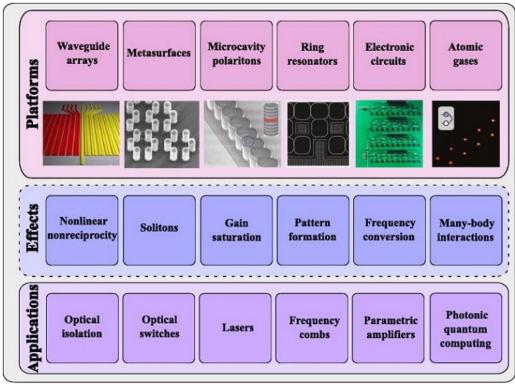


Lu et al, Nature Photonics **8**, 821 (2014) Ozawa et al, Rev. Mod. Phys. **91**, 015006 (2019)

Applied Physics Reviews

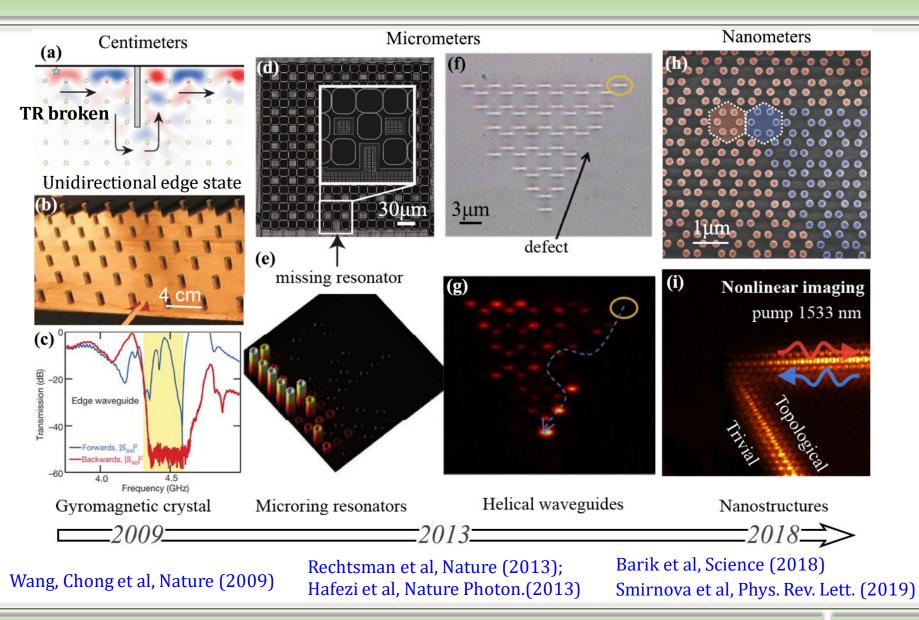
Nonlinear topological photonics

Daria Smirnova,¹ Daniel Leykam,^{2,3} Di Yidong Chong,⁴ and Yuri Kivshar^{1,a)}

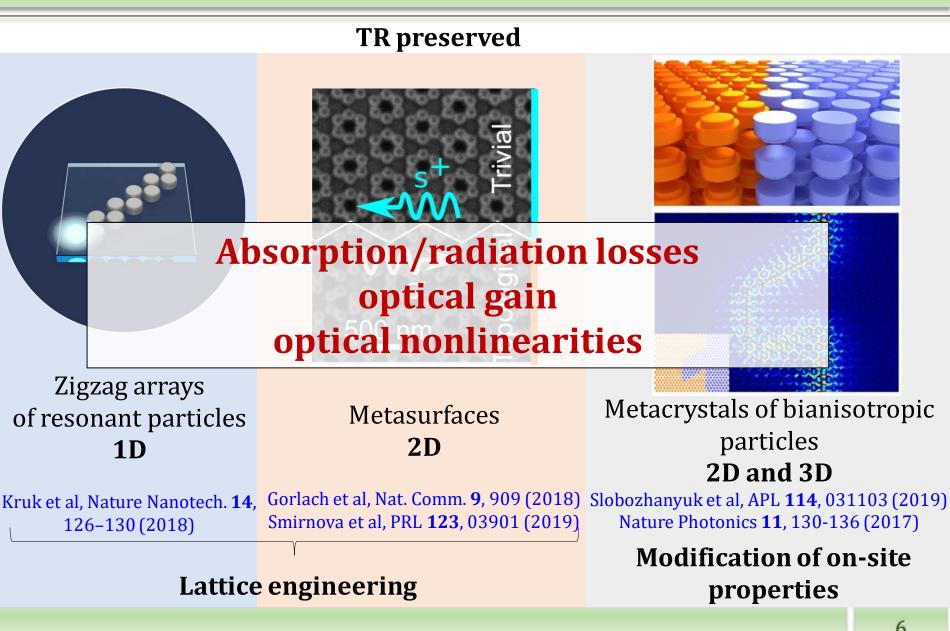


Smirnova et al, Appl. Phys. Rev. 7, 021306 (2020)

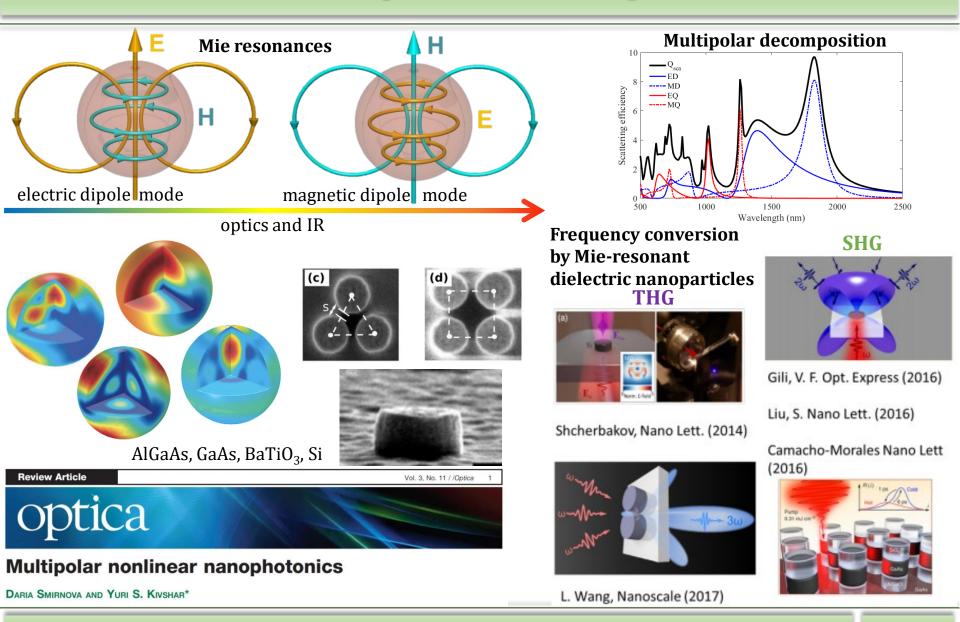
Towards miniaturization



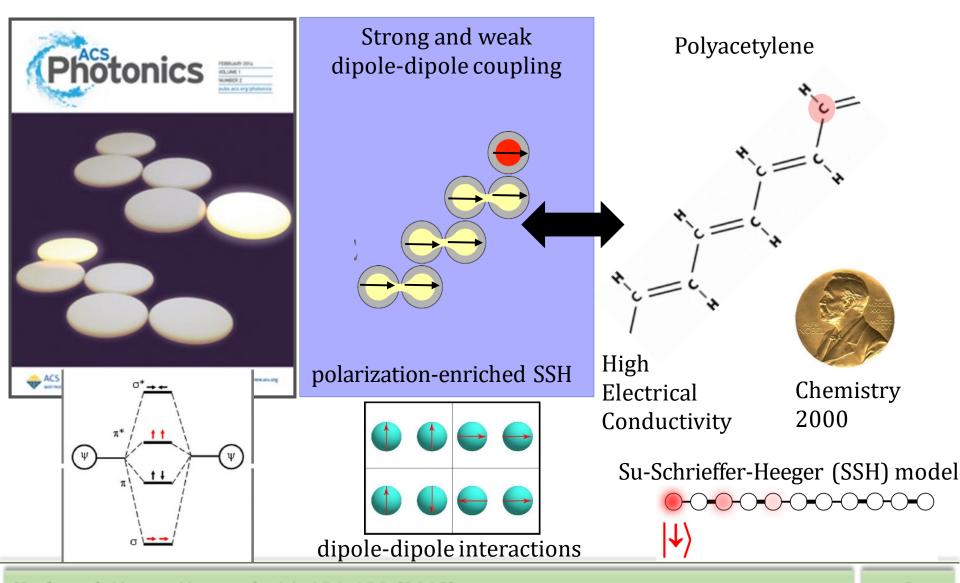
Our scope: All-dielectric platform



Nonlinear optics with nanoparticles



Zigzag array of resonant particles



Kruk et al, Nature Nanotech. 14, 126–130 (2018)

Third-harmonic generation in zigzag arrays

Interplay between ED and MD resonances:

$$\begin{pmatrix} p_{j,x} \\ m_{j,y} \end{pmatrix} - \alpha(\omega) \begin{bmatrix} g_{j,j-1} \begin{pmatrix} p_{j-1,x} \\ m_{j-1,y} \end{pmatrix} + g_{j,j+1} \begin{pmatrix} p_{j+1,x} \\ m_{j+1,y} \end{pmatrix} \end{bmatrix} = \alpha(\omega) \begin{pmatrix} E \\ H \end{pmatrix}, \quad \begin{pmatrix} E \\ H \end{pmatrix}_{\pm} = \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}$$

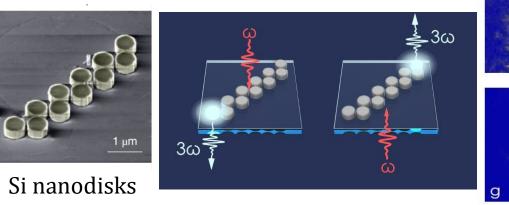
where the coupling is described by the Green functions

$$g_{2k,2k-1} = g_{2k-1,2k} = t \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}, \quad g_{2k,2k-1} = g_{2k-1,2k} = t \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$$

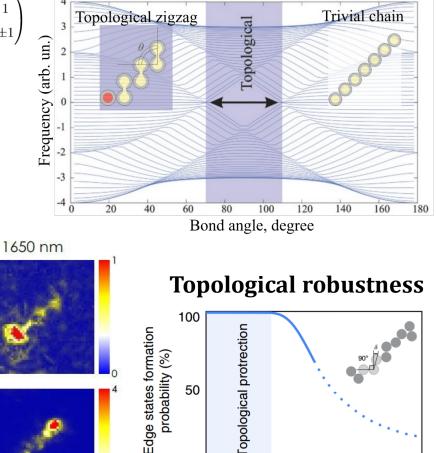
and the bianisotropic polarizability tensor is

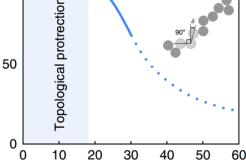
$$\alpha^{-1}(\omega) = \begin{pmatrix} \frac{\omega_{ED} - \omega - i\Gamma_{ED}}{\Gamma_{0,ED}} & ib \\ -ib & \frac{\omega_{MD} - \omega - i\Gamma_{MD}}{\Gamma_{0,MD}} \end{pmatrix} \,.$$

Top/bottom excitation asymmetry



Topological phase transition

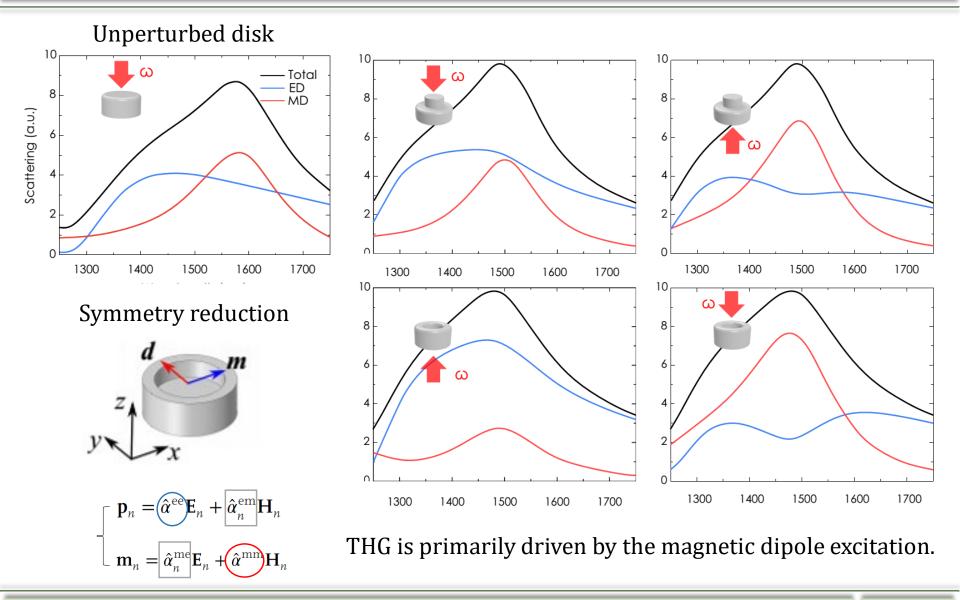




 $\Delta \varphi$ (deg)

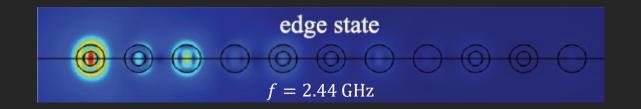
Kruk et al, Nature Nanotech. 14, 126–130 (2018)

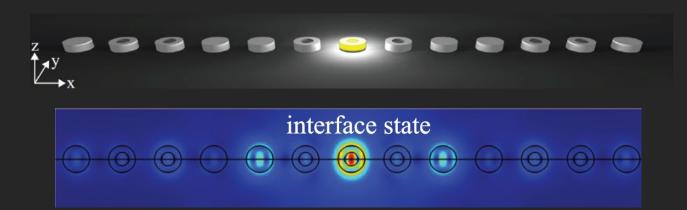
Multipolar decompositions for bianisotropic nanoparticles



Topological states mediated by staggered bianisotropy

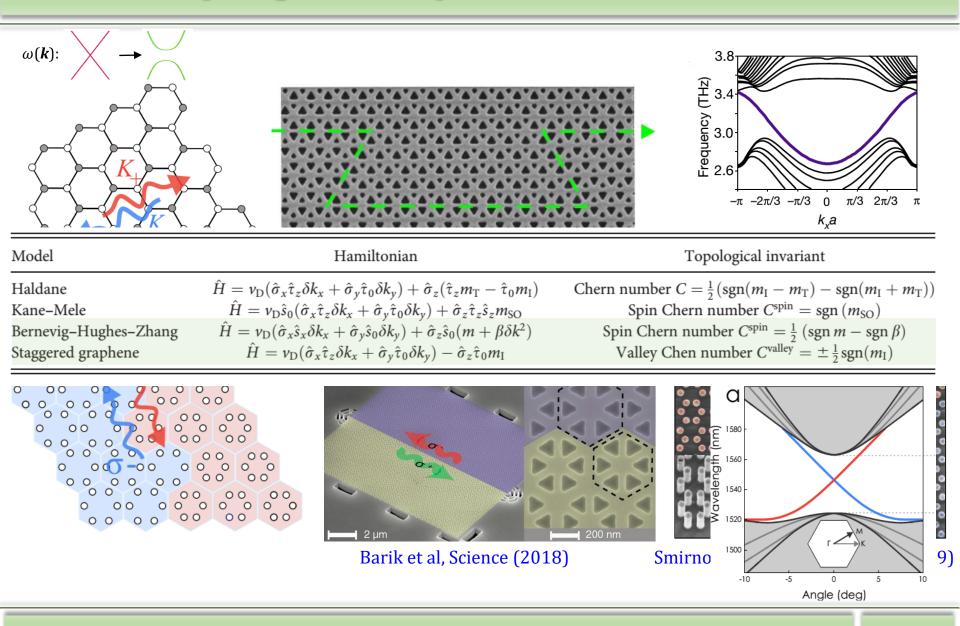
Staggered-bianisotropy SSH



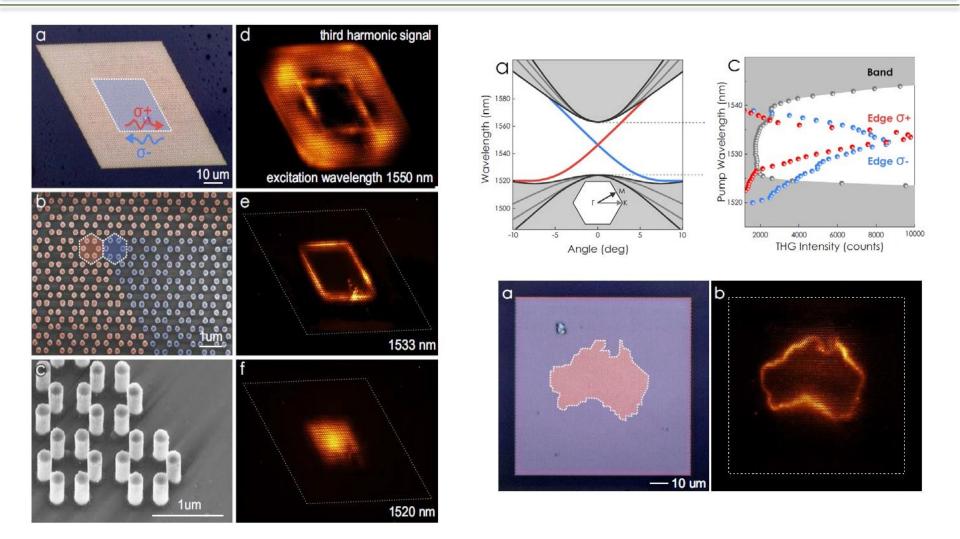


Bobylev, Smirnova, Gorlach, Laser Photonics Rev. 15, 115110 (2021)

Topological nanophotonic metasurfaces



Nonlinear imaging of edge states

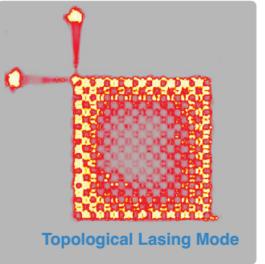


Fabrication: A/Prof. Duk-Yong Choi, ANU

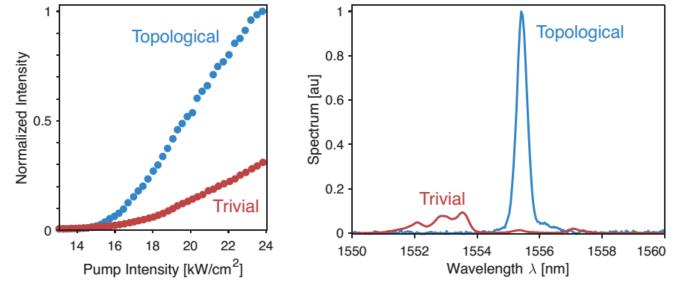
Smirnova et al, Phys. Rev. Lett. 123, 03901 (2019)

Advanced concept: Topological lasing

Using topologically protected states for lasing modes



Array of micro-ring resonators pumped at the perimeter



Achievement

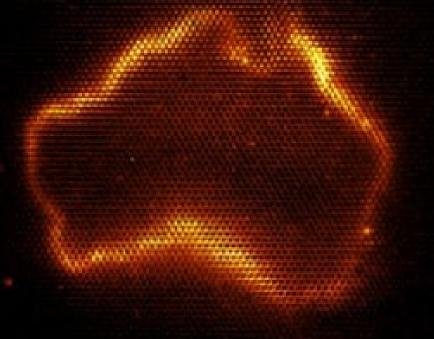
- single-mode lasing via selective spatial pumping of the edge
- high slope efficiency
- coherent lasing
- robustness to local lattice deformations Challenges

Slow carrier dynamics in semiconductors is a source of instabilities

Harari et al, Science **359**, eaar4003 (2018) Bandres et al, Science **359**, eaar4005 (2018)

Topological cavities for nanolasing

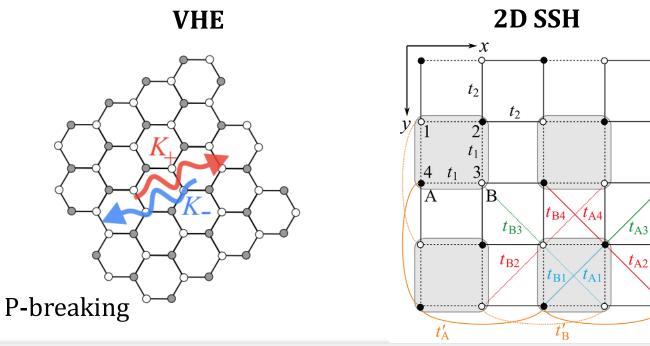
- Close to the lasing threshold observations can be largely explained in terms of the physics of linear modes
- Topology provides a significant guiding scheme for the smart control of the number, spectral separation, localization scales and quality factors of edge and defect modes
- Control over radiation characteristics (generation of OAM, singular optics)



Active topological cavities

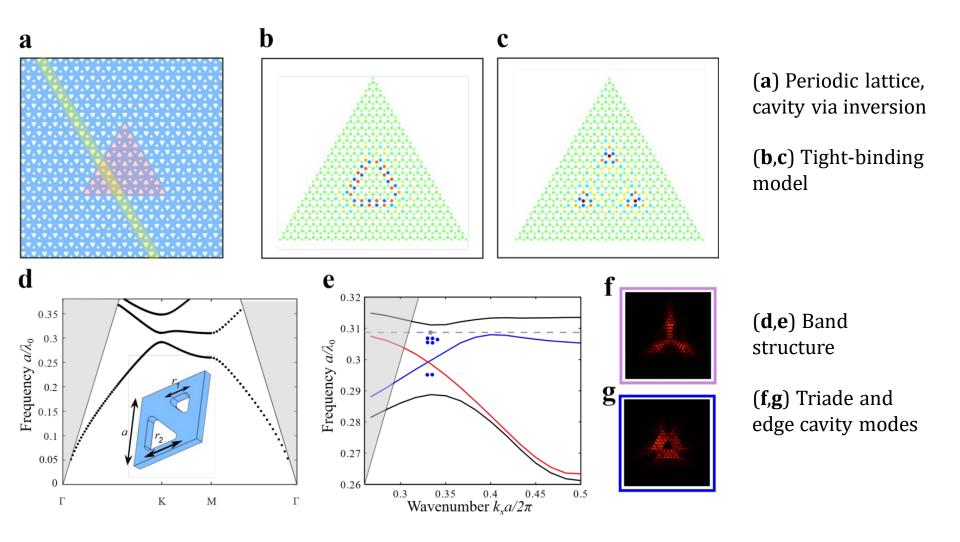
High-index III-V semiconductors + optical gain + topological field localization **Platform**

Nanopatterned InGaAsP membranes with embedded quantum wells



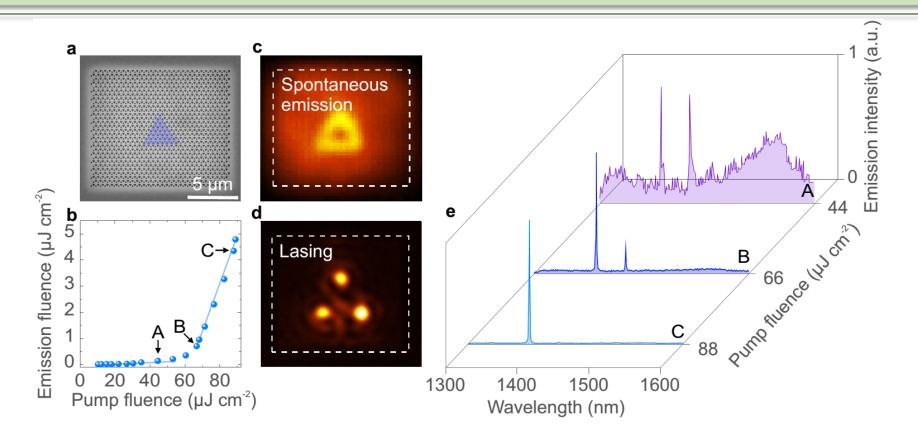
Designs

Valley-Hall nanophotonic cavities



Smirnova et al, Light: Science & Applications 9, 127 (2020)

Lasing from valley-Hall cavities



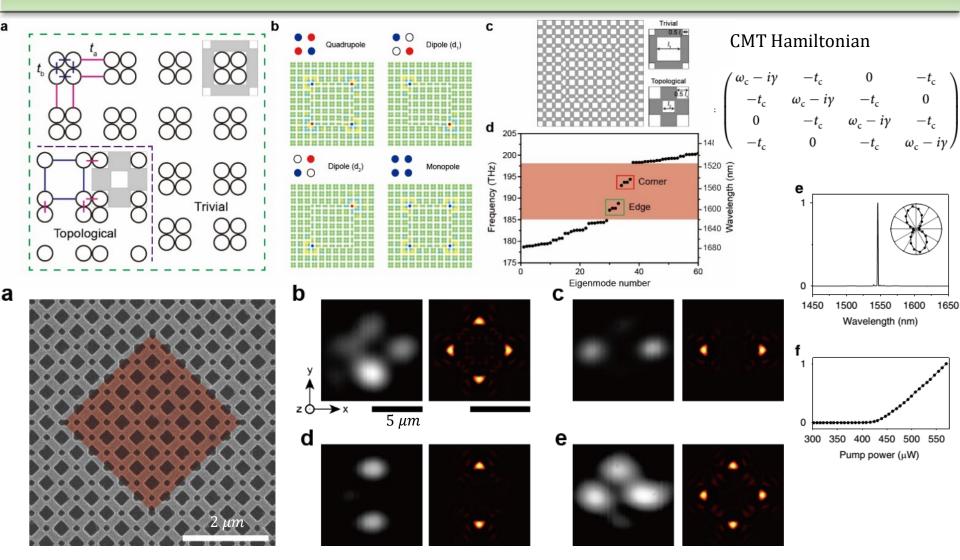
(a) SEM image of the fabricated sample. (b) Emission energy vs pump energy dependence showing a threshold transition to lasing. (c, d) Spatial distribution of emission for pump intensity (c) below and (d) above the lasing threshold. (e) Emission spectra showing a transition to a narrow-linewidth lasing.

Fabrication: Prof. Hong-Gyu Park's group, KU

Smirnova et al, Light: Science & Applications 9, 127 (2020)

18

Multipolar lasing modes from corner states



Fabrication: Prof. Hong-Gyu Park's group, KU

Kim et al, Nature Comm. 11, 5758 (2020)

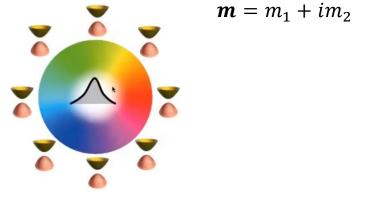
KOREA UNIVERSITY

19

Links to other topics

- ✓ Structured light
- ✓ Singular optics
- Transformation optics
- Parity-Time symmetry
- ✓ Leaky wave theory

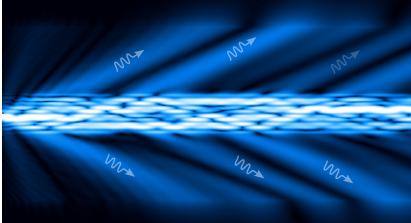
 $\widehat{H} = (k_x \widehat{\sigma}_x + k_y \widehat{\sigma}_y) \widehat{\tau}_z + m_1 \widehat{\tau}_x + m_2 \widehat{\tau}_y$



Gao et al, Nature Nanotech. 15, 1012 (2020)

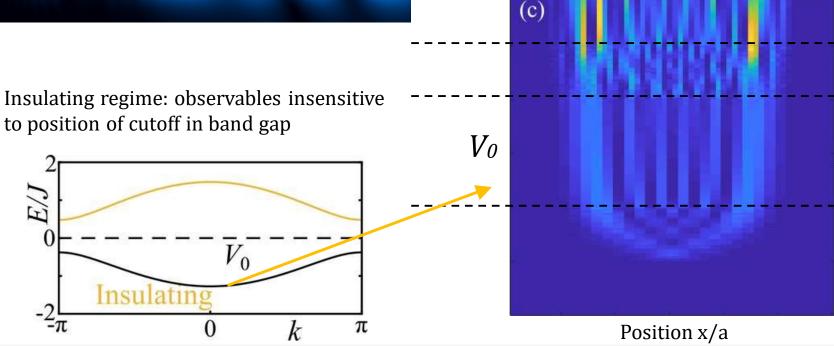
"Seeing topology using leaky photonic lattices", Optics & Photonics News, p. 50, December 2021

Leaky wave photonic lattices



- Populate all modes at z = 0
- Design energy-dependent losses to empty upper band

Application: measuring bulk topological invariants

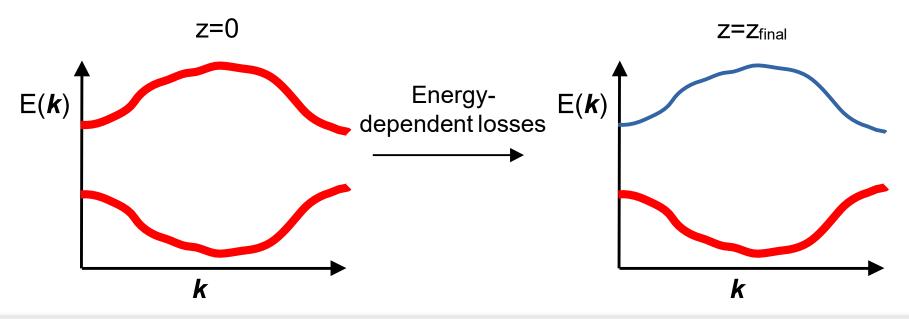


D. Leykam and D. A. Smirnova, Nature Physics 17, 632 (2021)

Leaky wave photonic lattices

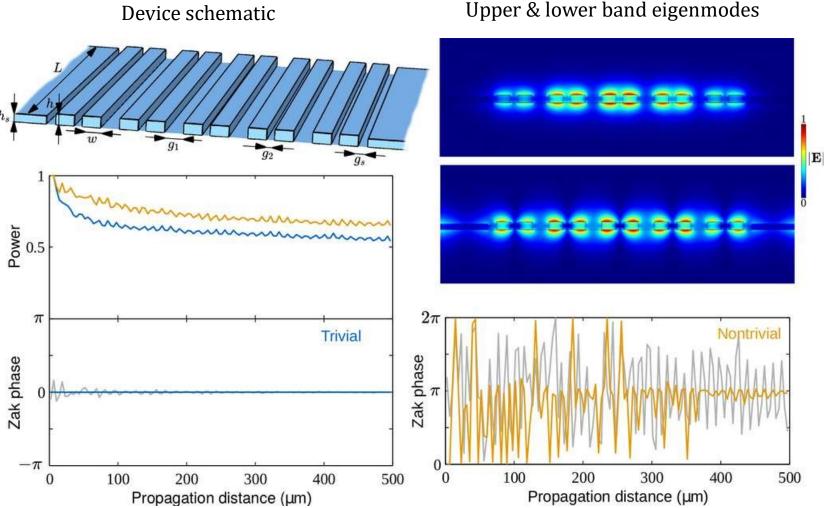
- Populate all modes at z = 0
- Design energy-dependent losses to empty upper band

Application: measuring bulk topological invariants



D. Leykam and D. A. Smirnova, Nature Physics 17, 632 (2021)

Implementation using silicon photonics



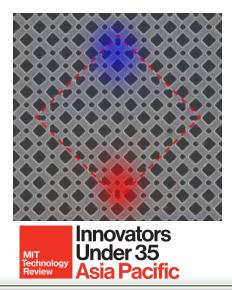
Device schematic

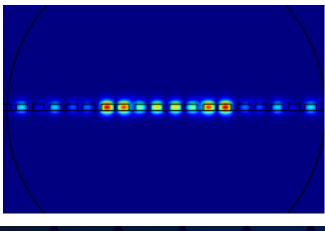
Work in progress: measure Zak phase in 1D Su-Schrieffer-Heeger model

D. Leykam and D. A. Smirnova, Nature Physics 17, 632 (2021)

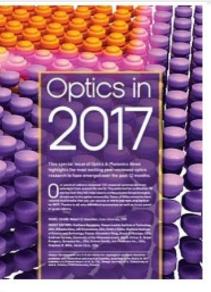
Summary on topological nanophotonics

- □ The all-dielectric platform holds promise for robust generation and guiding of photons at the nanoscale, and the versatile design of *active topological metasurfaces* with integrated light sources
- Potential applications for the design of topological nanolasers with superior characteristics and tolerance to fabrication imperfections
- Physics governed by non-Hermitian and Dirac-like Hamiltonians
- □ Optical light trapping and nontrivial emission profiles

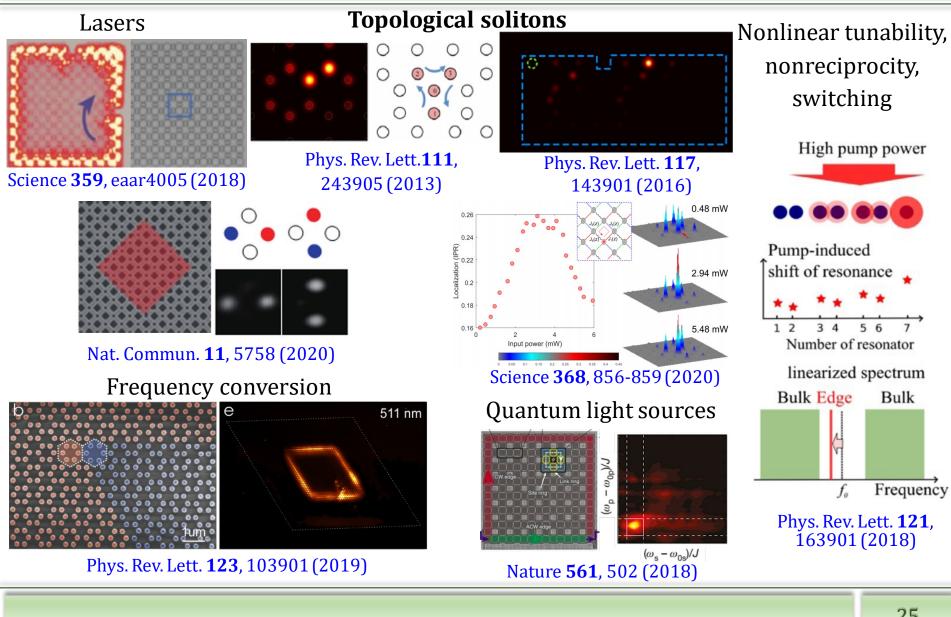




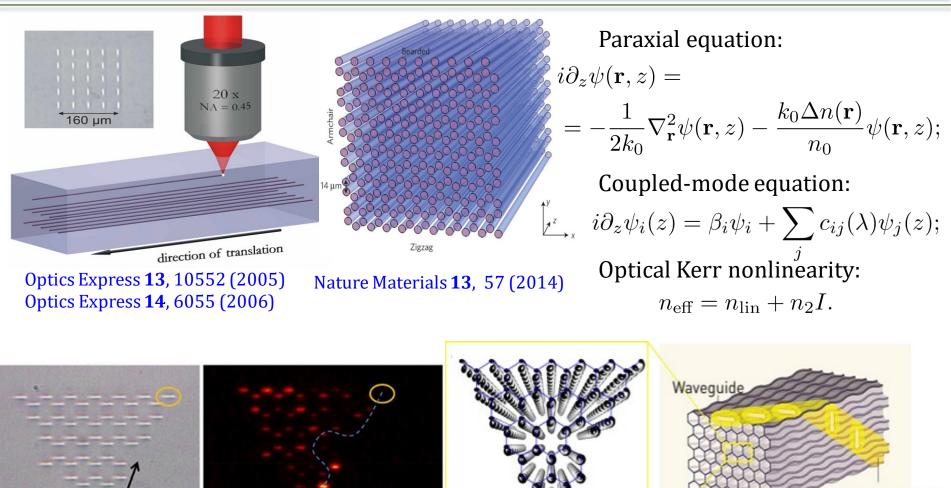
OPTICS & PHOTONICS NEWS DECEMBER 2021



Nonlinear topological photonics



Photonic waveguide lattices



Electromagnetic wave

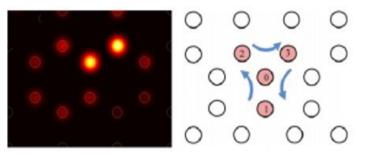
Hexagonal

array

Nature 496, 196 (2013)

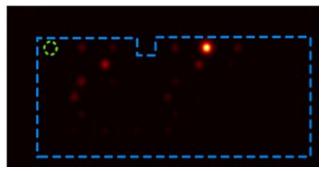
Topological solitons

Bulk solitons

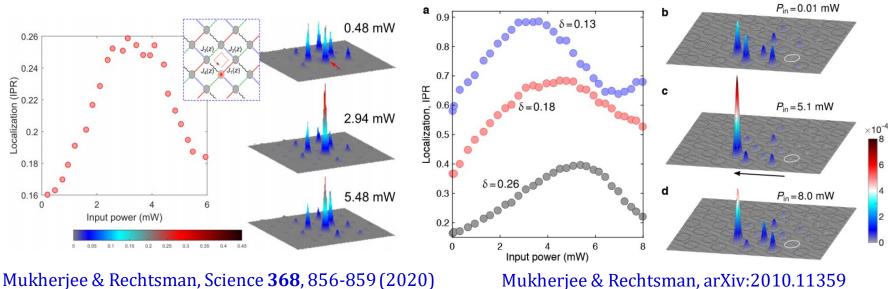


Lumer et al, Phys. Rev. Lett. **111**, 243905 (2013)

Edge solitons



Leykam & Chong, Phys. Rev. Lett. 117, 143901 (2016)



Mukherjee & Rechtsman, arXiv:2010.11359 Maczewsky et al, Science **370** (6517), 701 (2020)

Experiments

Nonlinear Dirac model

Nonlinear generalizations of topological lattice models

$$i\partial_z \Psi = (\hat{H} + \hat{H}_{NL})\Psi$$

- Models universal continuum (long wavelength) dynamics in topological lattices
- Analytical solutions for stationary localized states (bulk and edge solitons)
- Captures the nontrivial spin properties

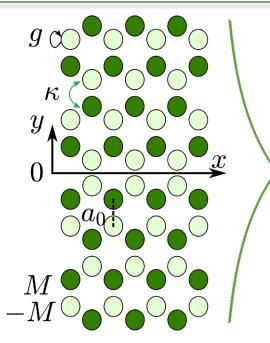
$$i\partial_t \boldsymbol{\psi} = \begin{pmatrix} M - \boldsymbol{g} |\boldsymbol{\psi}_1|^2 - \beta \left[\partial_x^2 + \partial_y^2\right] & -i\partial_x - \partial_y - \eta \left(-i\partial_x + \partial_y\right)^2 \\ -i\partial_x + \partial_y - \eta \left(i\partial_x + \partial_y\right)^2 & -M - \boldsymbol{g} |\boldsymbol{\psi}_2|^2 + \beta \left[\partial_x^2 + \partial_y^2\right] \end{pmatrix} \boldsymbol{\psi}$$

valley-Hallinsulator ($\beta = 0$); Bernevig–Hughes–Zhang model ($\eta = 0$)

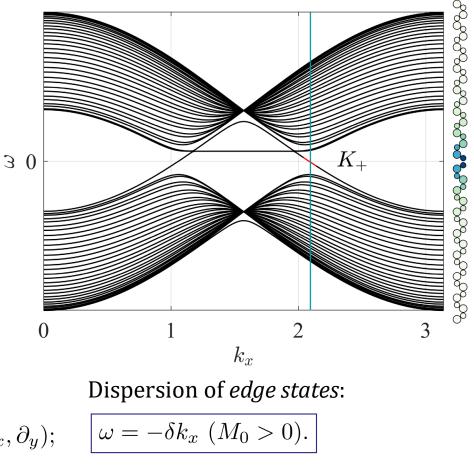
Topological gap solitons and nonlinear edge states



Linear edge states in valley-Hall lattices



Dirac equations for a spinor wave function near K_+ $(|M| \ll \kappa; v_D = \frac{3}{2}\kappa a_0 = 1; t = z/v_D):$ $i\partial_t \psi = \hat{H}_D(\delta k)\psi; \,\delta k = (\delta k_x, \delta k_y) \equiv -i(\partial_x, \partial_y);$ $\hat{H}_D(\delta k) = \delta k_x \hat{\sigma}_x + \delta k_y \hat{\sigma}_y + M \hat{\sigma}_z.$ $M(y) = \begin{cases} M_0, & y > 0; \\ -M_0, & y < 0. \end{cases}$



Structure of the *edge wavepacket*:

$$\boldsymbol{\psi} = a_0(x+t)e^{-M_0|y|}e^{i\omega(x+t)}\begin{pmatrix}1\\-1\end{pmatrix}.$$

Nonlinear edge waves

$$i\partial_t \psi = \begin{pmatrix} M - g |\psi_1|^2 & -i\partial_x - \partial_y \\ -i\partial_x + \partial_y & -M - g |\psi_2|^2 \end{pmatrix} \psi, \qquad \underline{\psi} = \\ \alpha_n(y + y_0) = \\ = \arctan\left[\frac{\Omega - \omega}{\sqrt{\Omega^2 - \omega^2}} \tanh\left(\sqrt{\Omega^2 - \omega^2} (y + y_0)\right)\right]; \\ \rho_s(\alpha_s) = \frac{2\left(-k\sin 2\alpha_s - \omega + M_0\cos 2\alpha_s\right)}{g\left(1 + \cos^2 2\alpha_s\right)}; \\ \delta = \arctan\frac{k}{M_0}, \quad \Omega = \sqrt{M_0^2 + k^2}, \\ \alpha_s = \alpha_n - \delta/2. \end{cases}$$

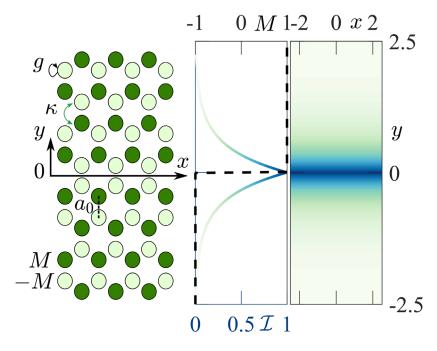
The nonlinear dispersion for edge states:

 $\omega + k = -gI_1/2, I_1 = |\psi_1 (y = 0)|^2.$ Intensity: $\mathcal{I} = |\psi_1 (y)|^2 + |\psi_2 (y)|^2.$

Boundary condition: $\psi_1(0) = -\psi_2(0)$.

$$\xrightarrow{= \psi e^{ikx}} \begin{pmatrix} \psi_1(y,t) \\ \psi_2(y,t) \end{pmatrix} = \sqrt{2\varrho_s(y)} \\ \times \begin{pmatrix} \cos \alpha_s(y) \\ -\sin \alpha_s(y) \end{pmatrix} e^{-i\omega t + ikx}.$$

Nonlinear edge state's profile:



Smirnova et al, Laser & Photon. Rev. 13, 1900223 (2019)

Nonlinear edge waves

$$i\partial_t \psi = \begin{pmatrix} M - g|\psi_1|^2 & -i\partial_x - \partial_y \\ -i\partial_x + \partial_y & -M - g|\psi_2|^2 \end{pmatrix} \psi, \qquad \underbrace{\psi = \psi e^{ikx}}_{w_2(y,t)} \begin{pmatrix} \psi_1(y,t) \\ \psi_2(y,t) \end{pmatrix} = \sqrt{2\varrho_s(y)} \\ \times \begin{pmatrix} \cos \alpha_s(y) \\ -\sin \alpha_s(y) \end{pmatrix} e^{-i\omega t + ikx}.$$

Integral characteristics

 \Downarrow

Integral power:
$$\mathcal{P} = \int_0^\infty \langle \boldsymbol{\psi} | \boldsymbol{\psi} \rangle dy = \frac{\pi}{g\sqrt{2}} + \frac{\sqrt{2}}{g} \arctan\left(\frac{-k\omega + M_0\sqrt{\Omega^2 - \omega^2}}{\sqrt{2}[M_0\omega + k\sqrt{\Omega^2 - \omega^2}]}\right)$$

Integral spin:

$$\langle S_x
angle = rac{1}{2} \int_0^\infty \langle \psi | \ \hat{\sigma}_x | \psi
angle dy$$

$$\langle S_x \rangle = -\frac{1}{g} \arcsin\left[\frac{1}{\sqrt{2}} \sin\left(\mathcal{P}\frac{g}{\sqrt{2}}\right)\right].$$

Nonlinear dynamics of edge states

$$i\partial_t \psi = \left(egin{array}{cc} M - g |\psi_1|^2 & -i\partial_x - \partial_y \ -i\partial_x + \partial_y & -M - g |\psi_2|^2 \end{array}
ight) \psi.$$

For transversely localized solutions:

For edge states:

 $\frac{\partial \mathcal{P}}{\partial t} = -2 \frac{\partial \langle S_x \rangle}{\partial x}; \\ \frac{\partial \mathcal{P}}{\partial t} = -2 \frac{d \langle S_x \rangle}{d\mathcal{P}} \frac{\partial \mathcal{P}}{\partial x},$

$$\langle S_x \rangle = \langle S_x \rangle (\mathcal{P});$$

 $\mathcal{P} = \mathcal{P} (\omega, k);$
 $\omega + k = -gI_1/2,$

Nonlinear simple wave equation for the intensity at the domain wall for small nonlinearity :

 \downarrow

$$gI_1 \ll M_0$$
: $\partial_t I_1 - \partial_x I_1 \left(1 - g^2 I_1^2 / \left(4M_0^2 \right) \right) = 0.$

Gradient catastrophe

For the initial Gaussian profile $f_0(x) = F_0 e^{-x^2/\Lambda_0^2}$: the discontinuity formation time: $t^* = 2\sqrt{e} \frac{M_0^2}{g^2 F_0^2} \Lambda_0$.

Asymptotic methods

$$i\partial_t \psi = \begin{pmatrix} M - g|\psi_1|^2 & -i\partial_x - \partial_y - \eta \left(-i\partial_x + \partial_y\right)^2 \\ -i\partial_x + \partial_y - \eta \left(i\partial_x + \partial_y\right)^2 & -M - g|\psi_2|^2 \end{pmatrix}$$

Small parameter
$$\mu \ll 1$$
: $\mu \sim gI_1/M_0$, $\eta M_0 \sim \mu^2$, $\tau_n = \mu^n t$, $\xi \equiv x + t$.
 $\psi_{1,2}(x, y, t) = \pm a(\xi; \tau_n) e^{-M_0|y|} + \sum_{n=1}^{\infty} \mu^n \psi_{1,2}^{(n)}(y; \xi; \tau_n)$.

Evolution equation for the edge pulse with accuracy $\sim \mu^2$:

$$i\left(\partial_t a + \frac{g^2|a|^2}{32M_0^2}a\partial_{\xi}|a|^2\right) + \frac{g}{4}|a|^2a + \eta\left(\partial_{\xi\xi}a - M_0^2a\right) = 0.$$

Neglecting spatial dispersion $\eta = 0$:

$$rac{\partial |a|}{\partial au_2} + rac{g^2}{16M_0^2} |a|^4 rac{\partial |a|}{\partial \xi} = 0 \, ,$$

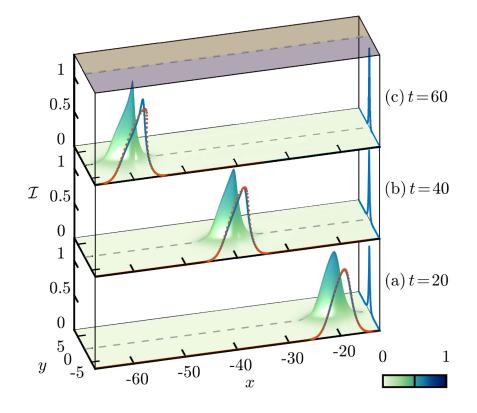
Taking into account $\sqrt{2I_1} \equiv |a|$, we obtain the previously found *simple wave equation*

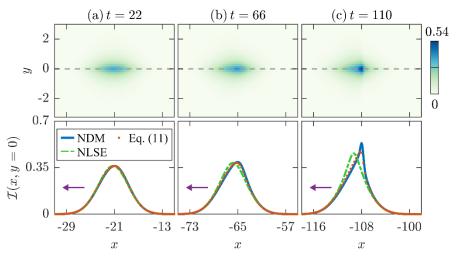
$$\Downarrow$$

$$\partial_t I_1 - \partial_x I_1 \left(1 - g^2 I_1^2 / \left(4M_0^2 \right) \right) = 0.$$

Nonlinear dynamics

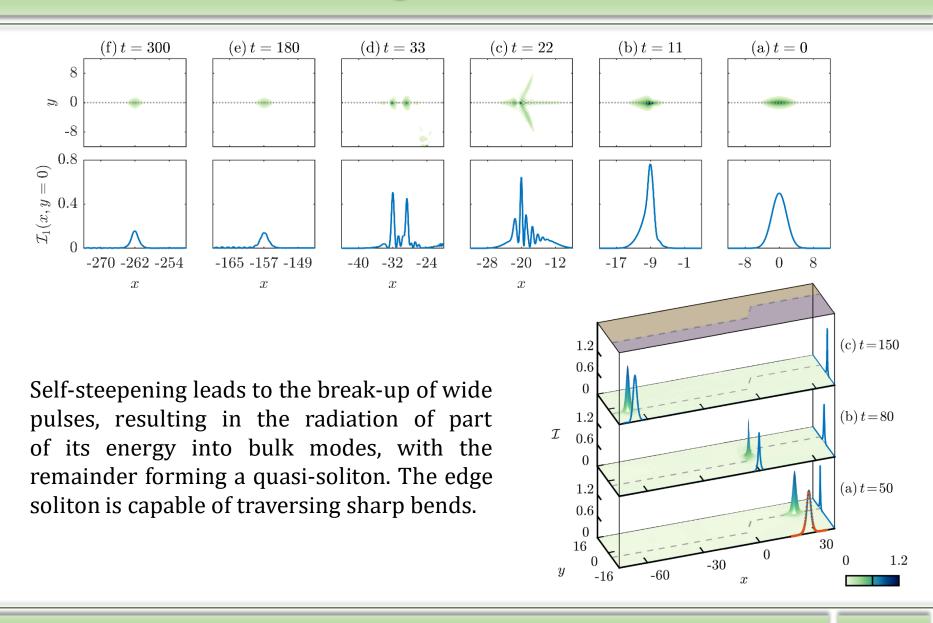
•
$$\frac{\partial I_1}{\partial t} - \frac{\partial I_1}{\partial x} \left(1 - \frac{g^2 I_1^2}{4M_0^2} \right) = 0.$$
 •
$$i\frac{\partial a}{\partial t} = -\frac{g}{4}|a|^2a - i\frac{g^2}{32M_0^2}|a|^2\frac{\partial|a|^2}{\partial\xi}a - \eta\frac{\partial^2 a}{\partial\xi^2} + M_0^2\eta a.$$



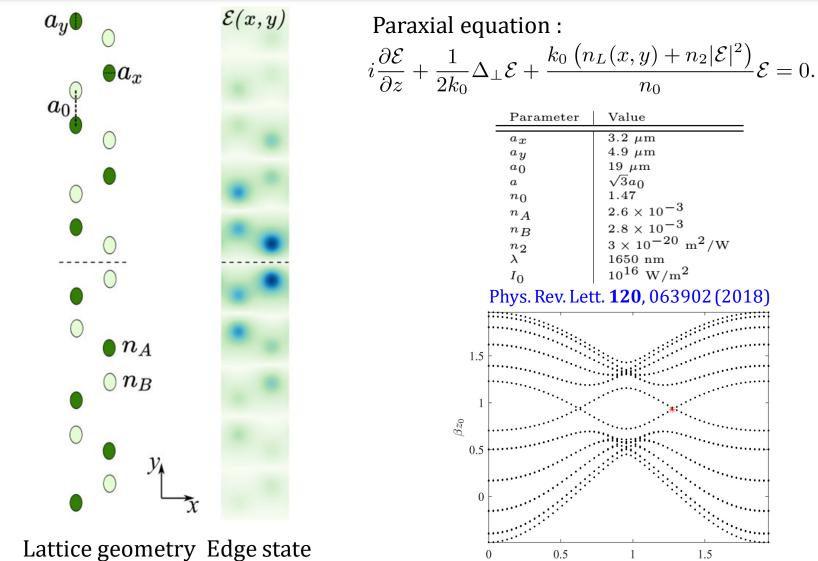


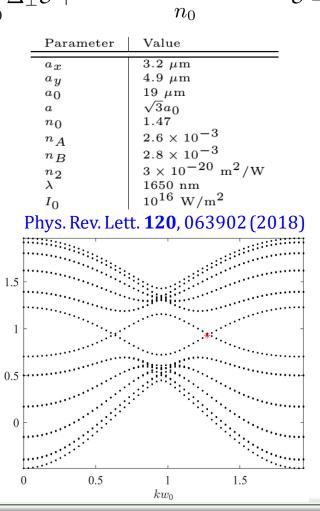
As the pulse propagates its tail becomes increasingly steep. Modified NLSE correctly reproduces the growing asymmetry.

Edge solitons

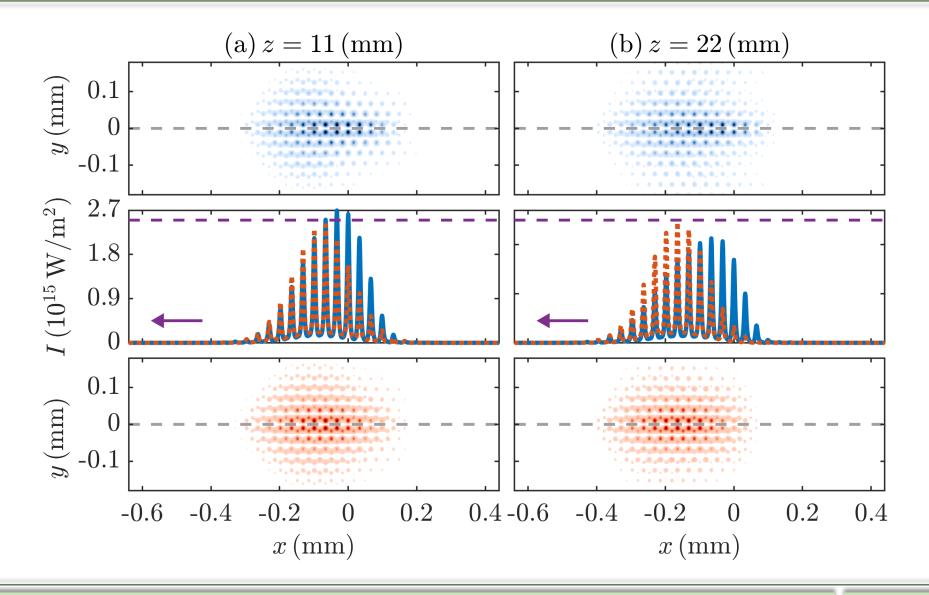


Valley-Hall domain wall in waveguide arrays



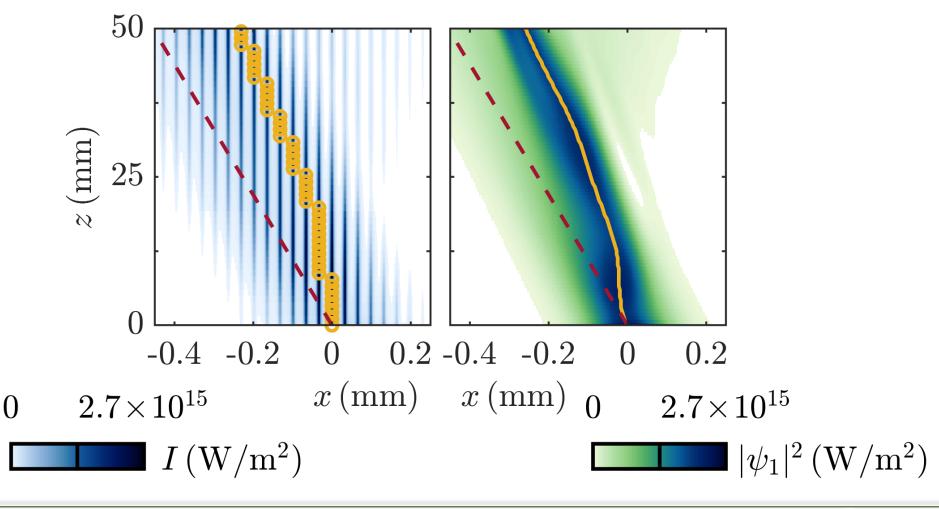


Beam propagation



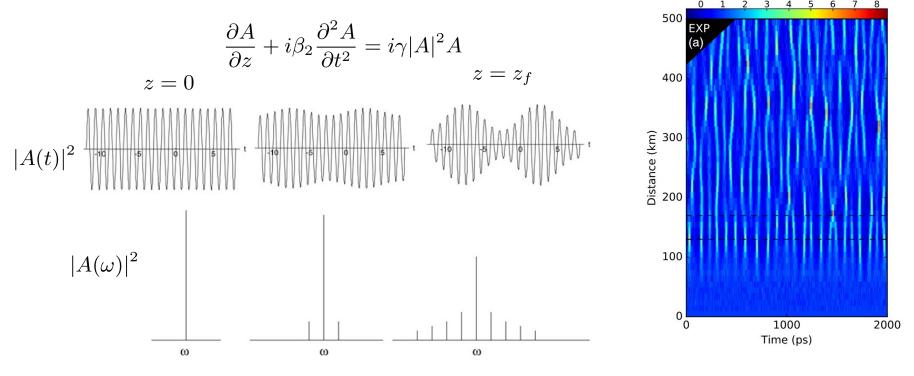
Beam propagation

Intensity distribution at the interface obtained in modeling of the paraxial equation (left) and the corresponding Dirac model (right)



Modulational instability

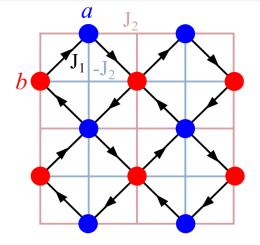
- Breakup of uniform wave field under combined action of dispersion and nonlinearity
- Spontaneous formation of localized solitons and breathers



V. E. Zakharov, L. A. Ostrovsky, Physica D 238, **540** (2009) A. E. Kraych et al., Phys. Rev. Lett. **123**, 093902 (2019)

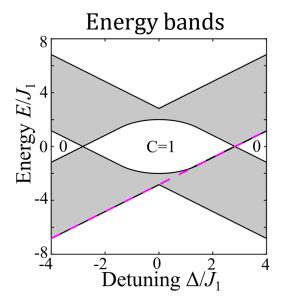
What are the properties of modulational instability in topological photonic lattices?

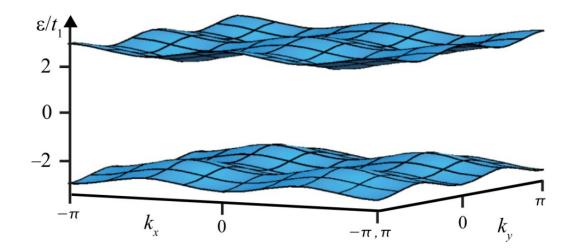
Model: square lattice Chern insulator + Kerr nonlinearity



$$i\partial_t \psi_{\boldsymbol{r}} = \left(\hat{H}_L + \hat{H}_{NL}\right)\psi_{\boldsymbol{r}} \quad \hat{H}_{NL}\psi_{\boldsymbol{r}}^{(j)} = \Gamma f\left(\left|\psi_{\boldsymbol{r}}^{(j)}\right|^2\right)\psi_{\boldsymbol{r}}^{(j)}$$
$$\hat{H}_L(\mathbf{k}) = \boldsymbol{d}(\boldsymbol{k})\cdot\hat{\boldsymbol{\sigma}}, \quad d_z = \Delta + 2J_2\left(\cos k_x - \cos k_y\right)$$
$$d_x + id_y = J_1\left[e^{-i\pi/4}\left(1 + e^{i\left(k_y - k_x\right)}\right) + e^{i\pi/4}\left(e^{-ik_x} + e^{ik_y}\right)\right]$$

Bloch wave eigenstates $\hat{H}_L(\mathbf{k})u_n(\mathbf{k}) = E_n(\mathbf{k})u_n(\mathbf{k})$





Neupert et al, Phys. Rev. Lett. 106, 236804 (2011)

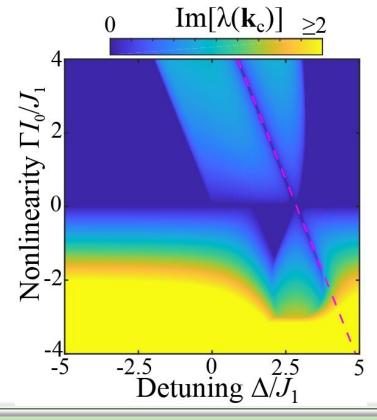
Linear stability analysis

Consider small perturbations to nonlinear Bloch wave $\psi_n(t) = (\phi_n + p_n(t))e^{-iEt}$

Compute linearised perturbation modes $p_n(t) = u_n e^{-i\lambda t} + v_n^* e^{-i\lambda^* t}$

Perturbation modes with positive $\,{\rm Im}\lambda\,$ are unstable

Stability re-emerges at nonlinearity-induced band crossing $\Delta + \Gamma I_0/2 = 4J_2$



Bernevig–Hughes–Zhang Hamiltonian: $\hat{H}_L = -J_1 \sqrt{2} \left(-p_x \hat{\sigma}_u + p_u \hat{\sigma}_x \right) +$ $+ \left(\Delta - 4J_2 + J_2 \left[p_x^2 + p_y^2 \right] \right) \hat{\sigma}_z.$ $\operatorname{Im}[\lambda(\boldsymbol{p}_{\mathrm{c}})]$ (d) Nonlinear mode: $|\phi(r)\rangle = \left(\sqrt{I_0}, 0\right)^T e^{i\pi x}$ 0 2 (e) $E_{NL} = \Delta - 4J_2 + \Gamma f(I_0)$ **ď** 1 0 -2 -4 0 2 4 $\Gamma I_0 = -2m_{\rm eff}$

Nonlinear dynamics of Bloch waves

$$i\partial_t\psi_{\boldsymbol{r}} = \left(\hat{H}_L + \hat{H}_{NL}\right)\psi_{\boldsymbol{r}}$$

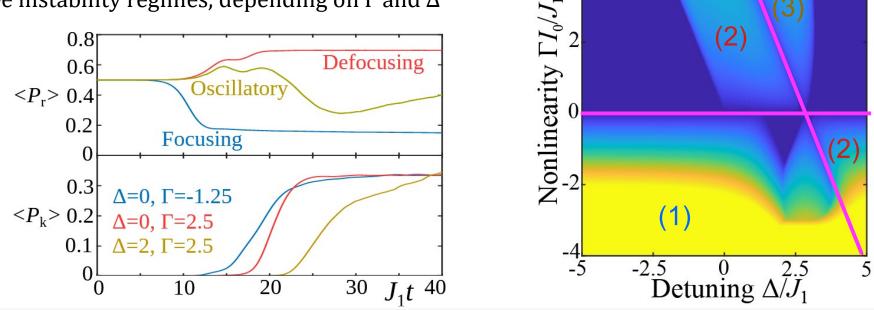
Real space participation number (fraction of strongly-excited lattice sites)

$$P_{\boldsymbol{r}} = \frac{\mathcal{P}^2}{2N^2} \sum_{\boldsymbol{r}} \left(\left| \psi_{\boldsymbol{r}}^{(a)} \right|^4 + \left| \psi_{\boldsymbol{r}}^{(b)} \right|^4 \right)^{-1}$$

Fourier space participation number (fraction of strongly-excited Fourier modes)

$$P_{\boldsymbol{k}} = \frac{\mathcal{P}^2}{2N^2} \sum_{\boldsymbol{k}} \left(\left| \psi_{\boldsymbol{k}}^{(a)} \right|^4 + \left| \psi_{\boldsymbol{k}}^{(b)} \right|^4 \right)^{-1}$$

Three instability regimes, depending on Γ and Δ

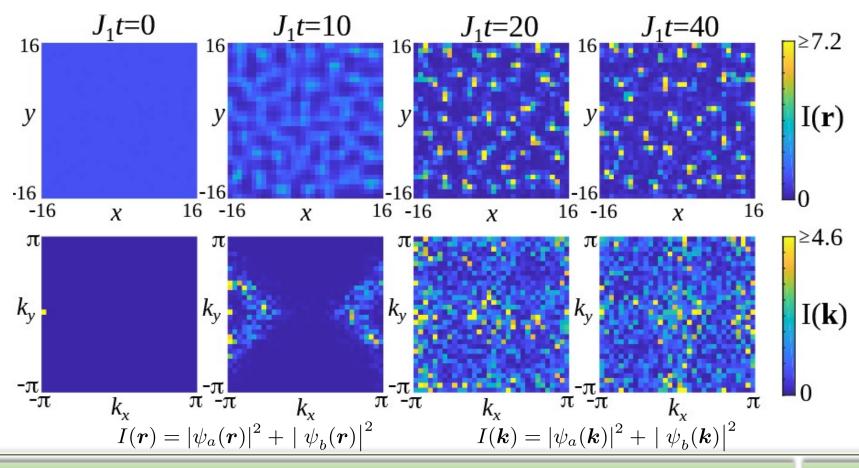


Self-focusing instability dynamics

Occurs when effective interactions are **attractive** $\Gamma m_{\text{eff}} < 0$

Formation of localized solitons in the topological band gap

Spreading in Fourier space, exciting the entire Brillouin zone

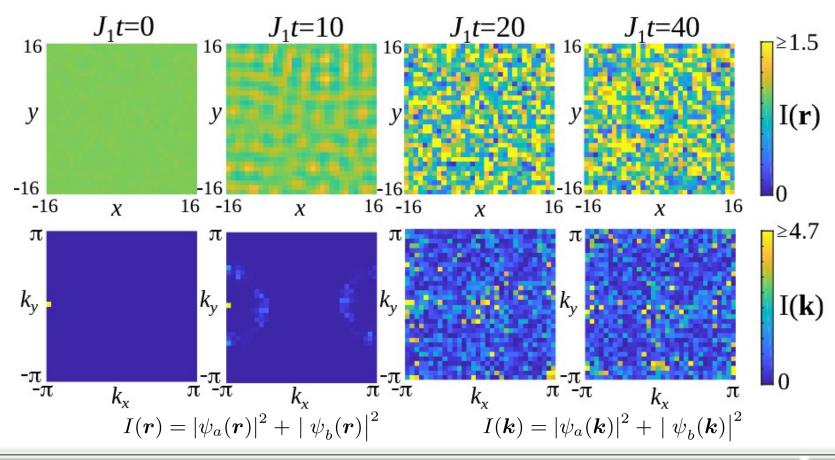


Self-defocusing instability dynamics

Occurs when effective interactions are **repulsive** $\Gamma m_{\text{eff}} > 0$

More uniform intensity in real space

Spreading in Fourier space, exciting the entire Brillouin zone

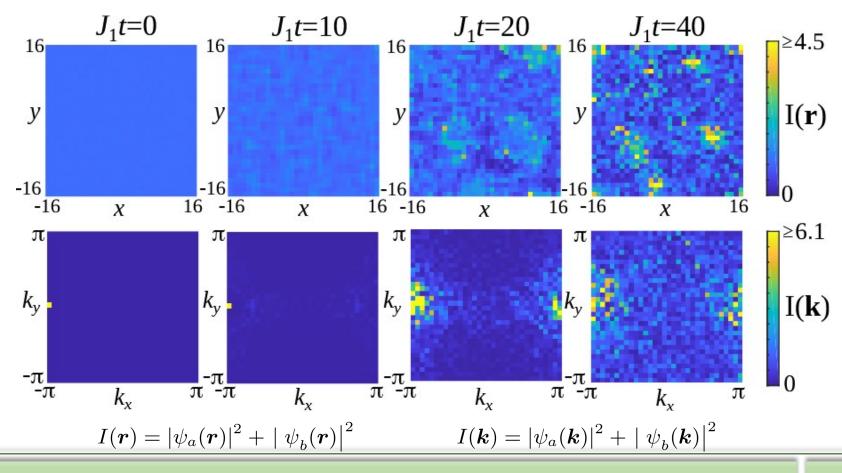


Oscillatory instability dynamics

Occurs when there is nonlinearity-induced band inversion $\Gamma I_0/2 > m_{\rm eff}$

No long-time steady state in real space

Spreading in Fourier space, exciting the entire Brillouin zone

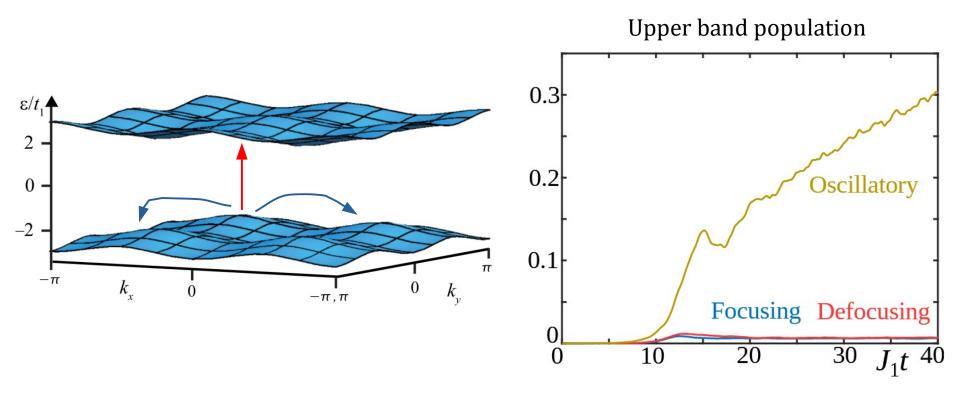


Nonlinearity-induced mode mixing

Nonlinearity can induce intra-band or inter-band mixing

Oscillatory instability regime: strong persistent inter-band mixing

Focusing & defocusing regimes: field spreads within the initially-excited lower band



Probing Chern number

"Polarization" = field distribution between the two sublattices

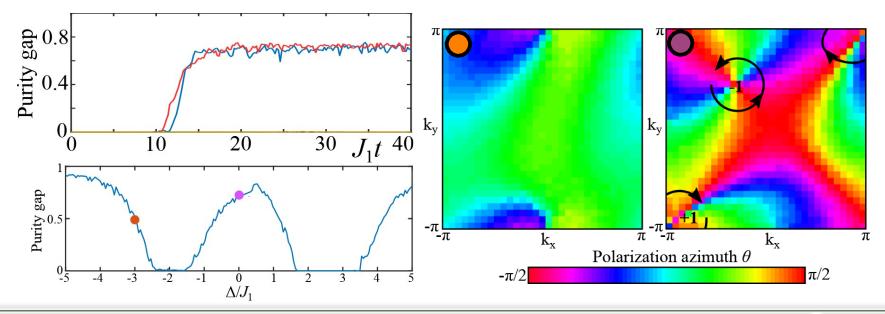
Consider the field polarization averaged over initial perturbations $\langle m{n}(m{k})
angle$

Nonzero purity gap $\min_{k} [\langle n(k) \rangle]$ when interband mixing strength is small,

field generated by instability has well-defined polarization

Bulk Chern number can be measured in focusing, defocusing instability regimes!

Fösel et al, New J. Phys. **19**, 115013 (2017) Hu, Zoller, Budich, Phys. Rev. Lett. **117**, 126803 (2016)

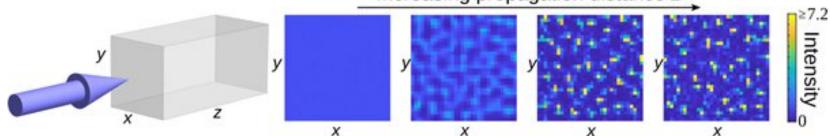


Summary on nonlinear waves in topological lattices

Nonlinear Dirac model: topological gap solitons and nonlinear edge states
 Nonlinear tunability and nonlinear coupling to topological modes
 Laser & Photon. Rev. 13,1900223 (2019); Phys. Rev. A 98, 013827 (2018); Light: Sci. Appl. 9, 147 (2020)

 Edge wavepackets exhibit gradient catastrophe due to novel higher-order effective nonlinearities emerging for topological edge states
 Phys. Rev. Research 3, 043027 (2021)

 Bulk modulational instability in topological bands: different regimes sensitive to nonlinearity strength and topological band inversions
 Phys. Rev. Lett. 126, 073901 (2021)



Increasing propagation distance z

Email: daria.smirnova@anu.edu.au