Making the First Low Loss Optical Fibers for Communications:

A Firsthand Perspective

Peter Schultz, Ph.D.

Ted Maiman Holding the First Laser (ruby) 694 nm.

Demonstrated May 16,1960 at Hughes Research Laboratories.

Charles Kao (at STL) proposed using fiber optics for laser communications in a paper coauthored with Hockham published in 1966.

Kao encouraged various telecom labs to consider this approach:

- British Post Office
- Bell Laboratories
- Standard Telecom Laboratories/ITT
- Nippon Telephone and Telegraph

- Conventional/purified optical glasses
- Double Crucible Method (shown)
- Rod-in-Tube Method

 Dr. William Shaver (Corning's R&D roving scientist) brought the news in 1966 to Corning of the need for low loss glass optical fibers.

• Dr. William Armisted (Corning's VP of R&D) initiated a research project at Sullivan Park to explore the potential to make them.

Corning Glass Works Sullivan Park R&D Center (circa 1966) Corning, NY

Don Keck, Bob Maurer and Peter Schultz Corning's fiber research team

Three Critical Requirements for a Working Fiber

- Exceptional optical quality (goal of <20 dB/km). The best conventional optical glasses available in 1966 had losses >1000 dB/km. A 10⁹⁸ improvement required!
- Perfect single-mode design geometry (10 microns core in a 125 microns fiber, Δn 1 %, no distortions)
- High strength and long life (150 kpsi over 25 years)

Flame Hydrolysis Process to Make Fused Silica Glass Invented by Dr. Frank Hyde, Corning chemist 1934

Corning flame hydrolysis fused silica boule process circa 1960's.

Original "inside" vapor deposition process concept (circa 1969):

by vaporization

Fiber Preform Deposition Apparatus 1970 17 dB/km titania-doped silica fibers

Next Steps:

- Sinter soot coating on tube inside wall.
- Draw preform (hole collapses) into fiber.
- Anneal bare fiber ~750°C to oxidize $Ti^{3+} \rightarrow Ti^{4+}$
- Etch fiber with hydrofluoric acid to recover strength.
- Coat fiber with enamel for handling.

They the attenuation in ; 10 10 354 29 meters Must remeasure this to check I electronics running ling lunch, a 158 mm. Noise a definitily lower. Maxim I had to decrease the HU to 850. HV = 850 , RC = 100 , R = 100 K2 5mg = 158 import in S= 92,2 mor Broke fiber : S = 48.7 mm Snel = 159 waiting till it comes down again 5 = 47.5 5Ny = 158 AL = 43 ture @ 0.653 = ters Bt = 10 log \$7.5 From these numbers :] 18.2 db/b

Outside vapor deposition method to make step and graded index optical fiber preforms (~3 km fiber) < 4dB/km germania-doped silica fibers in 1972.

Prediction (1973): If OH is removed, then losses ~0.2 dB/km should result at ~1550 nm in GeO₂-SiO₂ core fibers.

From: "On the ultimate lower limit of attenuation in glass optical waveguides", D.B. Keck, R.D. Maurer, P.C. Schultz, Appl. Phys. Lett. 22 (7), 307-309, April 1973

One of the basic patents issued to Corning covering the invention of telecommunication fiber optics. To this day, all telecom fibers are based on these patents.

United States Patent

Maurer et al.

[54] FUSED SILICA OPTICAL WAVEGUIDE

- [72] inventors: Robert D. Maurer; Peter C. Schultz, both of Painted Post, N.Y.
- [73] Assignee: Corning Glass Works, Corning, N.Y.
- [22] Filed: May 11, 1970
- [21] Appl. No.: 36,109

[52]	U.S. Cl.	350/96 WG, 65/30, 65/DIG. 7,
		65/DIG. 8
[51]	Int. Cl	
[58]	Field of Search	

[45] May 2, 1972

3,659,915

References Cited

[15]

UNITED STATES PATENTS

3,542,536	11/1970	Flam et al
3,445,785	5/1969	Koester et al
3,533,013	10/1970	Seitz

Primary Examiner—John K. Corbin Attorney—Clarence R. Patty, Jr. and Walter S. Zebrowski

ABSTRACT

An optical waveguide having a high purity fused silica cladding layer, and a core of high plurality fused silica doped with a sufficient amount of a multivalent metal oxide so as to increase the index of refraction of the core above that of the cladding layer.

10 Claims, 2 Drawing Figures

[56]

[57]

Amory ("Amo") Houghton: Corning CEO

True champion of the optical fiber program at Corning.

Corning Glass Works v. Sumitomo Elec. USA, Inc. U.S. District Court for the Southern District of New York December 21, 1987

OPINION AND ORDER

WILLIAM C. CONNER, District Judge

"The '915 patent clearly covers a basic, pioneering invention entitled to liberal construction and a broad range of equivalents."

Pioneer patent refers to a patent that covers a function or a major technological advance never before performed. Under the U.S. law, the claims relating to a pioneer patent are entitled to broader interpretation and therefore, should be given a broader range of equivalents.

Key process and design improvements over fifty years to lower optical loss, increase bandwidth and process output:

Years	Process Changes	Fiber Design Changes
1970's	Eliminate hydroxyl impurity	Graded index multimode
1980's	Eliminate boron-doping OVD, VAD and MCVD evolve	Singlemode
1990's	Fluorine doping Synthetic tubes for MCVD Rod-in-tube (RIT)	Dispersion-shifted and Dispersion-flattened for WDM
2000's	Rod-in-cylinder (RIC) Direct overclad on core rods OMCTS replaces SiCl ₄ for overclad High speed fiber drawing	DWDM Bend-insensitive Ultra-low loss pure silica core

OVD Soot Perform-making Circa 2020

Courtesy of Rosendahl Nextrom Oy (Vantaa, Finland).

Current Fiber Preform Manufacture

- Single-mode fibers
- Germania-doped silica core
- 6000+ kilometers fiber preform
- Draw speeds >>30 m/sec
- Average 0.182 dB/km loss
 @ 1550nm
- 150kpsi tensile strength

Preform feed section of state-of-the-art fiber draw tower

Courtesy of Rosendahl Nextrom Oy (Vantaa, Finland).

Cumulative total of cabled fiber installed worldwide (billion fiber-km)

Singlemode optical fiber relative price history

Corning's Sullivan Park Research Center

Some Lessons Learned:

- Keep up-to-date on market needs (e.g., Dr. Shaver roving scientist).
- Corporate R&D is a powerful tool (e.g., Sullivan Park Research Center).
- Inspired/inspiring leadership is critical (e.g., R&D VP Bill Armisted).
- Contrarian solutions can succeed (e.g., fused silica vs conventional glasses).
- Build on the past (e.g., flame hydrolysis capabilities).
- Keep-it-simple-stupid (e.g., lab GE vacuum cleaner).
- Protect/document your work (lab records, patents).
- A corporate champion is critical (e.g., CEO Amo Houghton).
- Disciplined transition of technical solutions (research>development>pilot manufacturing).
- Long term commitment to cost reductions/product improvements.

May your future be.....Light!

Thank you

