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OPTICS Outline

 Introduction to phase retrieval wavefront sensing
e Gerchberg-Saxton methods
« Nonlinear optimization
e Building a phase retrieval model
e Scalar wavefront theory
« Backpropagating error
 Incorporating polarization aberrations
e Jones pupll
« PSM
« Pauli-Zernike coefficients

 Full Model for Polarization
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 Want to recover unknown wavefront using PSF image

Observed PSF (with noise)

o u -

‘

W (u, v) (unknown)
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OPTICS Wavefront Sensing

« Known guantities
e Puplil function
e Possibly prior wavefront knowledge (i.e. known defocus)
« Sampling

 Measured guantities
 PSF Intensity
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Known

Pupil Function Image Amplitude (=vPSF)
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Gerchberg-Saxton Algorithm

—— START ——

Pupil Function

Random Phase

| Propagate to image plane

oy N )
. r - -
b__\‘, 1 ’.m\‘h_.
}.\, -w\? Ny
Pupil Phase
Function

Replace amplitude
with Pupil Function

Propagate back
to pupil plane

Amplitude Phase

Amplitude Phase

Replace amplitude

with VPSF
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Normalized RMS error on generated PSF versus
iteration for Gerchberg-Saxton Phase Retrieval
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« QOverfitting
* Including noise in PSF update causes “quilting” in phase
e Can attempt to fix by projecting phase onto polynomial basis

* Error not guaranteed to decrease
« Generally, error will decrease, but error measurement is not coupled to update
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OPTICS Nonlinear Optimization

* Create a physical modelling function
* |Inputis parameters to be optimized
e Output is single-value cost function to decrease
« MSE
 NRMSE
* Bias-and-gain invariant NMSE [1]
e QObtain search direction

e Gradient-based methods
* Finite differences
» Algorithmic differentiation

« Stochastic methods also exist
« Update parameters using search direction

1. S.T Thurman and J. R. Fienup, “Phase retrieval with signal bias,” J. Opt. Soc. Am. A 26, 1008-1014 (2009). SWP-38
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« Approximate gradient using small steps:

0x; €

0F f(X+ §(e) —f(®)

« Xis athe current estimate of the parameters, represented as an array

* §j(e) Is an array that is zero everywhere except for i, where is has a value of ¢
¢ is known as “step size”

* Requires many evaluations of modelling function
« Can only “probe” one parameter at a time
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OPTICS Finite Differences

» (Good for functions that have few parameters, non-analytical functions, and a
fast physical model

« Fall apart for functions with many parameters
o Complexity scales with number of input parameters
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e Use chain rule to determine gradients:

0E OE of
dx; Of 0x;




BIB'IL?ES Algorithmic Differentiation Example

e Forward: * Reverse (note that y indicates
derivative of y with respect to E):

Jn = cos(4 ay)

2 = 2(ly = Dp)
= Yn
- exp (-1 =n[-e (-3
F = Z(l - D,)? Tn = Tn(200)

a, = gn,|—4sin(4a,)]
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 Modular
* Including another function means including another gradient step
« Removing a function means removing a gradient step

 Exact
« Derived from analytic equations
 Holds as long at functions are differentiable

« Efficient
« Requires fewer calculations than finite differences
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« Derivatives for common operations with complex operations have been
published by Jurling et al [2]
e Fourier transforms
« Basis set expansion
« Complex exponentiation

2. A.S.Jurling and J. R. Fienup, “Applications of algorithmic differentiation to phase retrieval algorithms,” J. Opt. Soc. Am. A 31,
1348_1359 (2014) SWP -44
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e Use wave theory to propagate field from pupil plane to image plane
« Puplil plane contains total pupil function, total wavefront error from entire system
e Computationally simple

« Use wave theory to propagate to each surface individually
« Each surface has contributing pupil function, wavefront error
 More computationally complex
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e Wavefront
 Best expressed via basis set such as Zernikes — prevents fitting to noise

e Can include point-by-point wavefront in addition to Zernike basis to fit higher-order
features

« Amplitude

* Most simply the pupil function of the system
« Can also express as sum of Zernikes for non-uniform illumination
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OPTICS Propagation

 Must have sampling information of system, establish sampling quotient:

A("y)

Q= a.

« Ais wavelength, d, is pixel pitch of detector plane, f/# IS f-number of system

(@ = 2is Nyquist sampling in detector plane, Q < 2 can lead to aliasing in simulation,
Q > 2 is an oversampled detector

« Pad pupil plane with zeros to size P = Q N, where N is the size of one side of
a square array that just encapsulated the entire pupil function

« Crop intensity in image plane to size of detector window
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Forward Model Reverse Mode

Ezfr:ﬁ(ses; wavefront with W v) = z a7, (u, ) = z W (w, ) Z,, (u, v)
Create field with pupil function 2 _ 2
and wavefront PP 9(wv) = Alw,v) exp [iTnW(u, V)] W(u,v) = %S{g(u, v)g*(u,v)}
Propagate field to image plane G(&n) = Fuselgwv)} gu,v) = Tgl,u{é(f, m}

v -n n -v
Take modulus of image plane 1) = 16 mI? G(&,m) = 216, MG 1)

to obtain intensity

Take weighted sum of square _ _ 2 _
differences for cost function E ;W(f’n)[l(g’n) D& m)] I, n) =2w(& I n) —DE )
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« Ensure that dimensionality matches (e.g. I should be 2-dimensional)

e Ensure that real outputs have real gradients, complex outputs have complex
gradients
« ( should be complex, but W should be entirely real-valued
e Use finite differences to ensure that gradients are correct

« Difference between algorithmic differentiation and finite differences should be on the
same order of magnitude as step size €

SWP -49



The Institute of @- . . . .
OPTICS Incorporating polarization aberrations

« Scalar model cannot account for polarization aberrations
e Polarizing elements in system
» Reflective elements with light coming in near Brewster’s angle
e Birefringence

e Use combination of methods from Breckenridge et al in [3], Yamamoto et al
in [4]

3. J. B. Breckinridge, W. S. T. Lam, and R. A. Chipman, “Polarization aberrations in astronomical telescopes: The point spread
function,” Publ. Astron. Soc. Pac. 127, 445 (2015).

4. N. Yamamoto, J. Kye, and H. J. Levinson, “Polarization aberration analysis using Pauli-Zernike representation,” Proc. SPIE
6520, 6520 — 6520 — 12 (2007).
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OPTICS Jones Pupils
* For each sampled spatial point in arbitrary pupil plane, there is a Jones
matrix

» Describes how polarized light evolves in the system for that spatial point
« Create 2x2 array of pupil planes:

(]XX (u,v) Jxy(u, V))
Jrx(w,v)  Jyy(u,v)

« Foragiven J;;, i Is output polarization state and j Is input polarization state

SWP -51



The ntiute or (S Example: Jones Pupils for Wide-Field
. OPTICS Interferometric Telescope (WFIRST)

e Obtained from raytrace of on-axis field point

0.8 +0.030
0.7 i
o
0.5 :

0.4 -0.015
0.3 i

0.2 0.010
0.1 -0.005
0.0 -0.000

Uyxl
10.025 0.7
-0.020 gg
10.015 0
10.010 0.3
0.005 02
10.000 0.0

Uxy Uryl
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OPTICS Amplitude Response Matrix (ARM)

 Formed by propagating each Jones pupil element separately to image plane:

:Fu—>€

(]XX(u' v) Jxy(W, V)) Vo] (ARMXX(f»U) ARMXY(E»’?))

Jrx(u,v)  Jyy(u,v) — ARMyx($,m) ARMyy(S,1)

e Propagation performed the same as with scalar theory

SWP -53
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OPTICS Point-Spread Matrix (PSM)

* Entirely real-valued

* For each spatial point (¢,7n), use methodology to turn Jones matrix into
Mueller matrix using ARM components [5]

5. H. Fujiwara, “Jones-Mueller Matrix Conversion,” in “Spectroscopic Ellipsometry: Principles and Applications,” (John Wiley &
Sons, Ltd, Chichester, UK, 2007), chap. Appendix 4, pp. 353-355. SWP -54
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1.5

» IM”

1.5

d‘

I-o.75

PSM,, PSM,, PSM,; PSM,,
PSMs;; PSMs, PSMs; PSMs,

<P5M11 PSM,, PSM,; PSM14>
PSM,, PSM,, PSM,; PSM,,
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OPTICS PSF Formulation
« Multiplying PSM by a Stokes vector will give length 4 vector of real-valued
arrays

« First element is total intensity
« Remaining 3 elements are indicative of degree of X/Y, 45/135, and R/L polarization

e For formulating intensity, we only need a weighted sum of first four PSM
elements

SWP -56
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OPTICS PSF Formulation
1
PSMi,(¢,m) = > [IARMyx (&,m)|* + |[ARMyy (&,n)|* + |ARMyx (&,m)|* + |ARMyxy (&, 1) 7]
1
PSM1,($,n) = P [|ARMXX(§:77)|2 — |[ARMyy (¢, 77)|2 + |ARMYX(€'77)|2 — |ARMXY(€'77)|2]

PSM;3(&,m) = R{ARMxx (&, m)ARMxy (&,1)} + R{ARMyx (§,m)ARMyy (€,1)}

PSM4(¢,m) = —S{ARMyx (¢, n)ARMxy (§,1)} — S{ARMyx (¢, n)ARMyy (€,1)}

[ = ) SyPSMin(E,)
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OPTICS Pauli-Zernike Coefficients

« Jones pupll is difficult to separate into scalar and polarization-specific
aberrations

e At each spatial point (u,v), decompose Jones matrix using Pauli matrices to
obtain spatial coefficients, known as Pauli pupils:

J(u,v) = z a,(u,v)o,

SWP -58
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« For a Jones matrix at a given spatial point (u, v) :

~ Jxx(wv) + Jyy(w,v)
ao(u,v) =

2
~Ixx (w,v) — Jyy(u,v)

a;(u,v) = >
Jyx(wv) + Jxy(u,v)

a,(u,v) = >
_yx (w,v) — Jxy(u,v)

as (u, U) — .

21
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e Converting back is simple:

]XX (u, 77) = Qo (u, 77) + aq (U,, U)
]YY (u) U) = Qg (u) U) —aq (U,, 77)
]XY(ui 77) = ay (u, 77) o iCl3 (u) U)

]YX (u, 77) = ay (u, 77) + iCl3 (u) U)
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OPTICS Pauli-Zernike coefficients

 Amplitude and phase of a, Is the amplitude and phase of the system with no
polarization aberrations

e lfay=a,=a3=0,Jxx =Jyy =ap,and Jxy = Jyx =0
i ThUS, ARMXX — ARMYY — T{ao}, ARMXY = ARMYX =0

* PSMy; = %(lARMXXlz + |[ARMyy|* + |ARMxy|? + |ARMyx|*) = |F{ao}|?
+ PSMy; =3 (IARMxx|” — |ARMyy | + |ARMxy|” — | ARMyx|) = 0
e PSM;s = R(ARMyxARM; ) + R(ARMyyARM;y) = 0
e PSMy, = —J(ARM3xARMyy) — I(ARMyxARMyy) = 0
« Regardless of Stokes vector, total intensity will simply be |F{ay}|?, which is
scalar wavefront theory

SWP -61
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e Each Pauli matrix corresponds to an eigenpolarization state:
* 0, has unpolarized eigenvectors (degenerate)
* ¢, has X/Y linearly polarized eigenvectors
* 0, has 45/135 deg. linearly polarized eigenvectors
e 03 has circularly polarized eigenvectors

SWP -62
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OPTICS Pauli-Zernike coefficients

 Represent amplitude and phase of a, using Zernike decomposition
e« Same as scalar model

 Foraq, a,, and a;, represent real and imaginary parts using Zernike
decomposition

e Can perform simulation with known amounts of polarization

« Can parameterize polarization aberration using Zernike coefficients for optimization
purposes

e Can adjust scalar wave phase and amplitude independently of polarization
effects

SWP -63
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WFIRST Pauli Pupils

0.8

Amplitude

o

Phase (waves)

5

Real

)

Imaginary

0.04 y

Imaginary

Imaginary
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WFIRST Pauli Pupils

Pupil 2 Magnitudes Pupil 1 Magnitudes

Pupil 3 Magnitudes

1072
1073
107*
1073
1076
1077
1078
107°

NN
NN

01 2 3 45 6 7 8 9101112131415 1617 18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

\\

01 2 3 45 6 7 8 91011121314 151617 18 19 20 21 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

NN

01 2 3 45 6 7 8 9101112131415 1617 18 19 2021 22 2324 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Zernike number

Bl Real Zernikes (+)
I Real Zernikes (-)

Imaginary Zernikes (+)

77, Imaginary Zernikes (-)
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The nstitute or (O Total Forward Model —
. OPTICS Pauli Zernike-Coefficients

 We have a set of Zernike coefficients c,,,,, where n corresponds to Zernike
Index and m corresponds to the Pauli pupils as follows:

- om Representation

Amplitude of a,
Phase of a,
Ria,}
3{aq}
Ria,}
3a,}
Rias}

3{as}

~N OO o B~ WO N - O
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Alu,v) = 2 Conln (U, V)

n

Buv) =Y CinZa(u,)

ao(u,v) = A(u,v) expliedp(u, v)]
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. OPTICS Total Forward Model — Other Pauli Pupils
a, (u,v) = Z eonZn (1 v)_ i z canZn (1 v)_
ay(u, v) = Z CanZn (1 v)_ i Z canZn (1 v)_
as (1, v) = z CenZn (i v)- i z conZn (1, v)-




The nstitute of (D8 Total Forward Model — Pauli to Jones
. OPTICS conversion

]XX(u; v) — Clo (u, U) + al (u, U)
]YY (u, U) — aO (u, U) T al (u, U)
Jxy (w,v) = a(u,v) —iaz(u, v)

Jyx(w,v) = ay(u,v) + iaz(u,v)
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OPTICS Total Forward Model - Propagation

Frss
(]XX (w,v) Jxy(u, 77)) ﬁ) (ARMXX(‘f: n) ARMyy (S, 77))
Jrx(w,v)  Jyy(u,v) ARMyx(¢,m) ARMyy(S,1)
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OPTICS Total Forward Model — Forming the PSM

N| =

PSMy1(¢,n) = = [|1ARMyx(§,m)|* + |ARMyy (§,n)|* + |ARMyx (&, m)|? + |[ARMyy (¢, 1)]°]

N| =

PSMi,(¢,m) = [|ARMXX(€»77)|2 — |[ARMyy (¢, 77)|2 + |ARMYX(€»77)|2 — |ARMXY(€»77)|2]

PSM;3(&,m) = R{ARMxx (§,m)ARMxy (§,n)} + R{ARMyx (§,m)ARMyy (¢,1)}

PSM14(¢,m) = —3{ARMyx (§,n)ARMxy (§, 1)} — ILARMyx (§,n)ARMyy ($, 1)}

SSSSSS



e nsttuts or (D8 Total Forward Model — Weighted Stokes
. OPTICS Summation

1) = ) SaPSM1n(§.1)

 From here, we have PSF intensity, which can be fed into a metric to obtain
our error metric value

« Value of I(¢,7n) dependent on metric choice

SWP -72



mhe nstitute of D8 Total Reverse Model — Gradients for
. OPTICS Stokes and PSM components

PSMln(f» 77) — Snl_(f» n)

S0 =) PSMy(§,mI(E )
1
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OPTICS Total Reverse Model — Gradient for ARM

ARMXX — ARMX)([PSMll + PSMlz] + ARMxy[PSMlg + lPSM14]

ARMyy = ARMyy|PSMy; — PSM;,| + ARMyx|PSM;3; — iPSM,]

ARMyy = ARMyy|PSM{; — PSM,,| + ARMyx|PSM;5; — iPSM,,]

ARMYX — ARMY)([PSM]_]_ + PSMlz] — ARMyy[PSM13 + lPSM14]



The Institute of (WS Total Reverse Model — Gradient for Jones
OPTICS Pupil

. - Feou ,_ _
(Mxx(f» n) fﬂxy(f» 77)) &’) (]_XX (u,v) ]_Xy(u» V))
ARMyx(¢,m) ARMyy(S,1) Jrx(w,v)  Jyy(u,v)
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Total Reverse Model — Gradient for Paul
Puplils

ao(u,v) = Jxx(u,v) + Jyy(u, v)
a,(w,v) = Jxx(u,v) — Jyy(u, v)
a,(u,v) = Jxy(w,v) + Jyx(u, v)

az(u,v) =i []_XY (u,v) — ]_ vx(u,v)]



The nstitute of (9 Total Reverse Model — Gradients for
. OPTICS phase/amplitude of a,

A(u,v) = R{ay(w, v) exp[—i ¢(u, v)]}

Wu,v) = 27” S{a,(u, v)ag(u, v)}



The nstitute of (9 Total Reverse Model — Gradients for
. OPTICS Zernike coefficients

Con, = Z A(w,v)Z,(u,v)
u,v

Ciy = Z Wu,v)Z,(u,v)
u,v



The nstitute of (9 Total Reverse Model — Gradients for
. OPTICS Zernike coefficients

DR CACRYIPACRD

Gin = ) (@ (w0} Zn (V)

u,v



The nstitute of (9 Total Reverse Model — Gradients for
. OPTICS Zernike coefficients

Can = ) (@ 1)} Zn (V)

Con = ) (@, 0} (V)

u,v



The nstitute of (9 Total Reverse Model — Gradients for
. OPTICS Zernike coefficients

Con = ) (@3 1)} 2 (,v)

Crn = Z tas(u,v)3Z,(u,v)

u,v

SSSSSS
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* Nonlinear optimization for phase retrieval is done best with algorithmic
differentiation

A model with polarization was created, and a reverse model was built
according to rules from [2]
« Uses Pauli-Zernike coefficients, PSF formulation from [3]

« Allows for optimization of scalar aberrations, polarization aberrations, and source
polarization

2. A.S.Jurling and J. R. Fienup, “Applications of algorithmic differentiation to phase retrieval algorithms,” J. Opt. Soc. Am. A 31,
1348-1359 (2014).

3. J. B. Breckinridge, W. S. T. Lam, and R. A. Chipman, “Polarization aberrations in astronomical telescopes: The point spread
function,” Publ. Astron. Soc. Pac. 127, 445 (2015). SWP .82
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QUESTIONS
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