

Nanoscale Multilayers Optics for EUV and X-ray Applications

Qiushi Huang Runze Qi, Zhong Zhang, Wenbin Li Zhanshan Wang

Tongji University

huangqs@tongji.edu.cn, wangzs@tongji.edu.cn

2019.1 New lab in Huxi campus (Shanghai)

EUV & X-ray Science (XUV)

Elemental sensitivity

>

Background

Large penetration depth

4

Nanometer Manufacture

EUV & X-ray reflective optics >

Short wavelength technology require advanced reflective optics

Background

EUVL scanner

Carl Zeiss SMT GmbH, Winfried Kaiser

> Reflection of short wavelength light 6

 $n=1-\delta-ik$ $\delta \rightarrow 0$, k is non-negligible

Basics

Basics

 $n=1-\delta-ik$ $\delta \rightarrow 0$, k is non-negligible

Artifical crystal: High-z / low-z materials $2d\sin\theta = k\lambda$ d=1-20nm

Basics

> Reflection of short wavelength light

EUV lithography enablers land German Future Prize

26 Nov 2020

Zeiss, Trumpf, and Fraunhofer developers recognized for key elements that make up ASML's game-changing systems.

Three of the pioneers behind the development of photonics technology that has made extreme ultraviolet (EUV) lithography possible have won the **Deutscher Zukunftspreis (German Future Prize)** for 2020.

Peter Kürz from Zeiss, Trumpf's Michael Kösters, and Sergiy Yulin from the Fraunhofer Institute for Applied Optics and Precision Engineering (IOF)

received the award from Germany's federal president Frank-Walter Steinmeier at a ceremony in Berlin on November 25.

Team players: Yulin, Kürz, and Kösters EUV Source, Reflective optics system, Coatings

IPOE

1 Design of XUV multilayers

2 Interface engineering of nanolayers

3 Stability of nanoscale ML

4 Deposition of large size mirrors

5 Micro/Nano structured ML

Design

n=1- δ-ik

High z – absorber, low z - spacer

- ✓ Large difference in δ
- \checkmark Small absorption, especially for spacer
- ✓ Sharp interface between two materials
- ✓ Stability over time

Design

Layer structure

•

d-spacing

$$2d\mathrm{sin}\theta = k\lambda$$

Thickness ratio $\Gamma = \frac{\Delta t_{\rm H}}{\Delta t_{\rm H} + \Delta t_{\rm L}} = \frac{\Delta t_{\rm H}}{d}$

Number of bilayers N

DAVID ATTWOOD

Aperiodic multilayer

Broadband multilayer

Design

Yakshin et al, Opt. Express, 18, 6957 (2010)

Periodic

Aperiodic

Aperiodic Mo/Si mirror for EUVL 0.7 0.6 0.5 Reflectivity $\lambda = 13.5 \text{ nm}$ 0.4 0.3 0.2 0.1 0.0 12 15 18 21 9 24 Incidence angle, degrees

Design

Yakshin et al, Opt. Express, 18, 6957 (2010)

Experimental concern:

Smooth variation of layer thickness - reduce fabrication difficulty

Aperiodic Mo/Y polarizer @8.5-10.1nm

Wang et al, Appl. Phys. Lett. 89, 241120 (2006)

1 Design of XUV multilayers

2 Interface engineering of nanolayers

3 Stability of nanoscale ML

4 Deposition of large size mirrors

5 Micro/Nano structured ML

Interface is Imperfect

Interface imperfections significantly affect performance!

Understand the growth behavior of atomic layers

Create interfaces sharper & smoother

Interface engineering

15

Typical fabrication techniques

Louis et al. Progress in Surface Science 86, 255 (2011)

Different kinetic energy of deposited atoms will affect the interface roughness/diffusion

D. Windt Imd Software Installation Guide & User's Manual

no interface engineering

a) interface barrier layer

e b) immiscible

Mixture gas of $Ar + N_2/air...$

c) reactive

sputtering

d) lons assistance

Barrier layer like B_4C , $C \dots$ to suppress interdiffusion

Composing materials have high enthalpy of formation Mixture gas of Ar + $N_2/air...$ to passivate interfaces Low energy ions reduce interface roughness

Barrier layer for Mo/Si

C on Mo-on-S

Formation of asymmetric Mo-silicide at two interfaces

Braun et al. SPIE, 4782 (2002)

Yulin et al, Microelectronic Engineering 83, 692 (2006)

Bajt et al. SPIE, 4506, 65 (2001)

0.4nm B₄C Mo-on-Si 0.25nm B₄C Si-on-Mo

Barrier layer for Mo/Si

C on Mo-on-S

Formation of asymmetric Mo-silicide at two interfaces

Braun et al. SPIE, 4782 (2002)

Yulin et al, Microelectronic Engineering 83, 692 (2006)

Bajt et al. SPIE, 4506, 65 (2001)

19

Barrier layer for Cr/V

Soft X-ray "water window " imaging (λ =2.2–4.4 nm)

Interface

Engineering

D.T. Attwood, SXR and EUV radiation.

Hydrated biological sample

G. McDermott, et al, Trends Cell Biol. 19(11), 587 (2009)

Legall, et al, J. Phys. Conf. Ser. 463, 012013 (2013).

Barrier layer for Cr/V

Cr/V ML $d_{Cr}=d_{V}=0.9$ nm Cr/V without B₄C (a) 0.1 fitted 0.01 σ=0.45nm-0.55nm [₩] 1E-3 1E-4 1E-5 $-B_4C/Cr/B_4C/V$ (0.1nm) (c) 0.1 0.01 fitted [₩]1E-3 σ=0.21nm-0.31nm 1E-4 1E-5

> 0.1nm B₄C barrier suppress the polycrystalline layer growth Huang et al, Opt. Lett. 41(4), 701 (2016).

Barrier layer for Cr/V

Compound formation of VB₂, VC suppress the crystallization and diffusion.

P. Li, Q. Huang et al. Vacuum 128, 85 (2016). Huang et al, Opt. Lett. 41(4), 701 (2016).

Reactive sputtering with N₂

24

Reactive sputtering with N₂

Pd-Y: ΔH° = -94 kJ/mol

YN: -269 kJ/mol

Huang et al., Opt. Express, 23, 33018 (2015).

Reactive sputtering with N₂

Huang et al, Opt. Express, 23, 33018 (2015).

Larger interface width Lower optical contrast

H. Ni, Q. Huang, et al., Materials, 13, 4504 (2020)

Ar

0.10 Pa

Pd

B₄C

1.246

1.460

INSTITUTE OF PRECISION

0.27

60

Reactive sputtering with N₂

- Increased crystallization -> larger interface roughness
- Less incorporation of sputtering atoms in ML
- Difference in HXR reflectance is small

H. Ni, Q. Huang, et al., Materials, 13, 4504 (2020)

1 Design of XUV multilayers

2 Interface engineering of nanolayers

3 Stability of nanoscale ML

4 Deposition of large size mirrors

5 Micro/Nano structured ML

Stability of nanoscale ML

Working conditions

- □ Irradiation
- Surface contamination

>

- □ Thermal load
- Humidity

□

ML deterioration

- recrystallization
- Increased interdiffusion
- Compound formation
- Period expansion/contraction
- Decrease of reflectance

Thermal stability of Mo/Si

1st collector mirror – high heat load

Increased compound, nanograins formation of Mo_5Si_3 - $MoSi_2$ and diffusion with temperature

1st collector mirror – high heat load

C diffusion barriers enhanced thermal stability of Mo/Si

Yulin et al, Microelectronic Engineering 83, 692 (2006)

Thermal stability of Ru/C

Hard X-ray monochromator for synchrotron radiation beamlines

L. Yang, Q. Huang et al, Coatings, accepted (2020)

Thermal stability of Ru/C

Hard X-ray monochromator for synchrotron radiation beamlines

Reduced interdiffusion, improved optical contrast, and larger period, As-deposited lead to the increased R

Temporal stability of Mg/SiC

Channel name	Primary ion(s)	Region of atmosphere*	
white light	continuum	photosphere	
1700Å	continuum	temperature minimum, photosphere	
304Å**	He II	chromosphere, transition region	
1600Å**	C IV+cont.	transition region + upper photosphere	
171Å**	Fe IX	quiet corona, upper transition region	
193Å**	Fe XII, XXIV	corona and hot flare plasma	
211Å**	Fe XIV	active-region corona	
335Å**	Fe XVI	active-region corona	
94Å**	Fe XVIII	flaring regions (partial readout possible)	
131Å**	Fe VIII, XX, XXIII	flaring regions (partial readout possible)	

Mg/SiC provides highest R @ λ > 25nm (d=14nm~25nm)

Severe surface corrosion occurred - reaction of Mg with humidity & reactive ions

Orbital	Species		
Mg 2p	MgO, Mg(OH) ₂ , Mg(CO) ₃	Soufli et al, Appl. Phys. Lett. 101,	115
O 1s	OH ⁻ , Mg(OH) ₂	043111 (2012)	

Temporal stability of Mg/SiC

Surface capping layer – protecting ML against degradation

3 years storage in air

Spontaneous intermixed AIMg amorphous layer act as a dense capping layer against permeability of humidity, oxygen...

Soufli et al, Appl. Phys. Lett. 101, 043111 (2012)

Irradiation stability of Cr/C

White beam irradiation $0.1W/mm^2$, 18h, 4.0×10^{-4} Pa

Cr/C ML remained intact

25nm C-based layer generated

J. Feng, Q. Huang, et al., Opt. Express, 27, 38493 (2019).

1 Design of XUV multilayers

2 Interface engineering of nanolayers

3 Stability of nanoscale ML

4 Deposition of large size mirrors

5 Micro/Nano structured ML

> Deposition methods for large mirror 39

Picometer control over large area of hundreds mm

Near normal incidence

Planetary rotation deposition

Φ200mm off-axis paraboloid

0.010

Uniformity < 0.6% (PV=60pm)

1 Design of XUV multilayers

2 Interface engineering of nanolayers

3 Stability of nanoscale ML

4 Deposition of large size mirrors

5 Micro/Nano structured ML

5.

Single-order diffraction model

5.

Excite single diffraction order with maximum efficiency!

X. Yang, I. Kozhevnikov, Q. Huang, Z. Wang, J. Opt. Soc. Am. B, 32, 506 (2015)

5.

单级次多层膜层状光栅(工作于0级次)

Single order Lamellar Multilayer Grating

45

- Reduced X-ray absorption
- Larger penetration depth
- ✓ Narrow band width, higher resolution

 $\Delta E_{LMG} = \Gamma^* \Delta E_{ML}$

R. Van der Meer, et al., AIP Advances 3, 012103 (2013)

Deep etched lamellar ML grating

DLMG using low optical contrast materials – easier fabrication / higher resolution

5.

Monochromators for SR				
	Cyrstal	grating		
Energy range	E>2keV	E<2keV		
E=1keV – 4keV ?				

5.

5.

Q. Huang, Igor. Kozhevnikov, et al., Optics Express 28, 821 (2020)

-1st efficiency = 24% @ ~1.2keV

5.

Voronov et al, Opt. Lett. 39, 3157 (2014). Voronov et al, Opt. Express 24, 11334 (2016).

-1st efficiency = 27% @ 2.2keV

IDCIE INSTITUTE OF PRECISION OPTICAL ENGINEERING

UNIVERSITY OF TWENTE.

Cr/C multilayer

5.

Ideal 1st order efficiency = 40%-70%

2400l/mm Cr/C BMG , -1st order efficiency = 60% @ 3keV !

5.

Q. Huang, A. Sokolov, et al., Optics Express 27, 16833 (2019)

High harmonics suppression, due to the mismatch of the high order diffraction condition

5.

F. Senf, Q. Huang, et al. Opt. Express, 24, 13220 (2016)

Traditional gratings

5.

(D>300nm) Low dispersion & resolution

ML nanograting (D=50nm)

High dispersion & resolution

Self-assembly based on ion bombardment - Ultrashort period grating structures

53

Xin Ou, et al, Phys. Rev. Lett., 111, 016101 (2013)

High resolution

Conformal growth of ML on nanostructures – forming three dimensional ML gratings

5.

Q. Huang, Xin Ou, et al., Nature Communications, 10, 2437 (2019).

Q. Huang, Xin Ou, et al., Nature Communications, 10, 2437 (2019).

- 1. Design of XUV multilayers periodic / aperiodic structures
- 2. Fabrication of nanometer ML
- 3. Stability under working conditions
- Understand the layer growth behavior & interaction between materials at atomic level

interface / surface engineering - improve interface quality & stability

4. Large scale fabrication – real optics – thickness control

5. Nanostructured ML optics – 1D -> 3D

SSRF, NSRL, BSRF China Academy of Engineering Physics

Shubnikov Institute of Crystallography, Russia

Optics Group

Elettra Sincrotrone Trieste

BEAR beamline

Thank you for your attention!