Nonlinear Integrated Microwave Photonics

Presented by:

OSA Nonlinear Optics Technical Group

The OSA Nonlinear Optics Technical Group Welcomes You!

NONLINEAR INTEGRATED MICROWAVE PHOTONICS

4 October 2018 • 10:30 EDT

OSA Nonlinear Optics Technical Group

Technical Group Leadership 2018

Chair **Ajanta Barh** DTU Fotonik, Denmark

Vice Chair Shu-Wei Huang U. of Colorado, USA

Event officer **Ryan T. Glasser** Tulane University, USA

E-magazine & Social media officer Samuel Serna MIT, USA

Webinar Co-officer Amol Choudhary U. of Sydney, Australia

Webinar Co-officer **Eva Pogna** Politecnico Di Milano, Italy

Technical Group at a Glance

Focus

- "Physics of nonlinear optical materials, processes, devices, & applications"
- **3800** members (**largest** in OIS, 3rd largest in OSA)

Mission

- To benefit <u>YOU</u>
- Webinars, e-Presence, publications, technical events, business events, outreach
- Interested in presenting your research? Have ideas for TG events? Contact us at <u>TGNonlinearOptics@osa.org</u>.

• Find us here

- Website: <u>www.osa.org/NonlinearOpticsTG</u>
- Facebook: <u>www.facebook.com/osanonlinearoptics</u>
- LinkedIn: <u>www.linkedin.com/groups/8302249</u>

Today's Webinar

Nonlinear Integrated Microwave Photonics

A/Prof. David Marpaung

Laser Physics and Nonlinear Optics Group University of Twente, Enschede, Netherlands d.a.i.marpaung@utwente.nl

Speaker's Short Bio:

David received his Ph.D in electrical engineering from the University of Twente, Netherlands. He then did post-docs at the University of Twente, and the University of Sydney as an Australian Research Council DECRA Fellow. He is now an Associate Professor (Vidi Laureate) at the Laser Physics and Nonlinear Optics group, University of Twente.

OSA Nonlinear Optics Technical Group

Nonlinear Integrated Microwave Photonics

David Marpaung

University of Twente, the Netherlands

The wireless revolution

- 10 billion internet devices in 2016
- Exponential growth in wireless data consumption

Source: NBC News

J. Hecht, Nature **536**, 2016

Outline

- Fundamentals of microwave photonics
- Nonlinear integrated microwave photonics
- Recent advances
- Challenges and roadmap

Microwave photonics (MWP): manipulation of RF signals using photonic techniques/components

Capmany and Novak, Nat. Photon **1** (2007) Seeds and Williams, J. Lightwave Technol.**24** (2006) Yao, J. Lightwave Technol. **27** (2009) Marpaung et al., Laser Photon. Rev. **7** (2013)

- Heavy (copper, 567 kg/km)
- High loss(190 dB/km @ 6 GHz)
- Rigid and large cross section

- Lightweight
- Low loss(0.25 dB/km)
- Very flexible

MWP applied in the generation, distribution, processing, measurement of RF signals

Arbitrary waveform generator

Reconfigurable processor True time delay Integrator and differentiator Antenna remoting **Optical beamforming** Radio over fiber Phase shifter RF spectrum analyzer **Optoelectronic oscillator**

Instantaneous frequency measurement

Tunable filtering

Next generation wireless

Satellite communication

Defense

Microwave photonic link

- Modulation device: CW laser+ external modulator or directly modulated laser
- Modulation: phase, intensity, complex

Microwave photonic link

- Source of signal degradation: E/O and O/E losses, noise, and nonlinear distortion
- Noise source: laser relative intensity noise, shot noise, thermal noise

HD: Harmonic distortion

2*f*₂

2.5

Link Gain (dB) = Output signal power(dBm) – Input signal power (dBm)

- Mostly < 1 (loss) \rightarrow "bad" design: -40 dB; state of the art > 20 dB
- Depends on efficiency of E/O and O/E conversions
- Square dependence on optical loss \rightarrow effect of loss is severe

Noise figure (dB) = Input SNR (dB) – Output SNR (dB)

- "Bad" design: > 50 dB; state of the art < 10 dB
- Depends on link gain and link noise
 NF (dB) = P_{noise} (dBm/Hz) G (dB)+174
- Depends on many parameters: optical power, RIN, bias point etc.

Spurious-free dynamic range (SFDR)

SFDR : SNR @ IMD power = noise power

= The strongest signal that can be filtered out without distortion

Important figure of merit (!)

Integrated microwave photonics

MWP link: low loss signal transport/distribution

MWP system: wideband, reconfigurable RF signal processing

Integrated MWP: PICs for advantage in size, weight and power

Three pillars of integrated MWP

Fast beamsteering

Low noise oscillator

Agile filters

Wideband converters

Functionalities

Performance

High link gain Low noise figure High dynamic range Wide bandwidth

Integration

Low footprint Energy efficient Light weight Electronic-photonic

Why beyond silicon: stringent requirements

n

Material platforms

Silicon

Universal signal processor (UPV, Nat. Comm. 2017)

Thick SOI

Instantaneous frequency measurement (Sydney, Optica 2016) Indium phosphide

All integrated filter (UPV, Nat. Photon. 2017)

Hydex

Comb-based RF photonics (Swinburne, JSTQE 2018)

Silicon nitride

Chalcogenide

Channelizer, processor (LioniX, JSTQE 2018) SBS tunable filter (Sydney, Optica 2015)

Ta₂O₅ (UCSB, Optica 2017) LNOI (Harvard, Optica 2017)

Emerging materials

nature photonics

A monolithic integrated photonic microwave filter

Javier S. Fandiño¹, Pascual Muñoz^{1,2}, David Doménech² and José Capmany^{1*}

- Platform: indium phosphide
- 100% integration (laser, modulator, rings, PD)
- But relatively low performance

Optics Letters

All-optimized integrated RF photonic notch filter

YANG LIU,^{1,2} ^(D) JASON HOTTEN,^{1,2} AMOL CHOUDHARY,^{1,2} ^(D) BENJAMIN J. EGGLETON,^{1,2} AND DAVID MARPAUNG^{1,2,*} ^(D)

- For the first time, advanced filtering and high performance are achieved simultaneously
- The filter exhibits record-low noise figure (15.6 dB) and high dynamic range (116 dB.Hz), amplification in the passband (8 dB) and ultrahigh stopband rejection (55 dB)

Research Article

Vol. 2, No. 10 / October 2015 / Optica 854

optica

Programmable photonic signal processor chip for radiofrequency applications

LEIMENG ZHUANG,^{1,*} CHRIS G. H. ROELOFFZEN,² MARCEL HOEKMAN,³ KLAUS-J. BOLLER,⁴ AND ARTHUR J. LOWERY^{1,5}

- Platform: silicon nitride
- Key component: Mach-Zehnder interferometers
- Reconfigurable processor
- Loss 0.1 dB/cm

ARTICLE

DOI: 10.1038/s41467-017-00714-1

Multipurpose silicon photonics signal processor core

OPEN

Daniel Pérez¹, Ivana Gasulla¹, Lee Crudgington², David J. Thomson², Ali Z. Khokhar², Ke Li², W Goran Z. Mashanovich^{2,3} & José Capmany¹

- Platform: silicon
- Hexagonal waveguide mesh
- Can exhibit more than 20 functionalities
- Application beyond MWP, including quantum photonics

Why nonlinear integrated MWP

Nonlinear optics leads to generation of new optical frequencies

Can be used for unique MWP signal processing, for example:

Multiwavelength optical source

Ultra-high resolution filtering

T Kippenberg et al, Science (2018)

Acousto-optic interactions

Photo-elastic effect: acoustic wave ("sound") influences light

Stress variation induces refractive index change

S. Minarzy, PhD thesis, UTS, 2018

Electrostriction: electric field ("light") induces displacement/material compression

Animation by Prof. Chris Poulton (UTS)

Stimulated Brillouin scattering

Eggleton et al,. Adv. Or

Strength of SBS: Brillouin gain coefficient

Role of overlap and mode confinement

- Large overlap requires confinement of optical and acoustic modes
- Acoustic confinement is determined by acoustic impedance (velocity) of materials

Example of on-chip Brillouin device: chalcogenide

- High index material As₂S₃ (n~2.45)
- Small mode area ($A_{eff} \sim 2.3 \ \mu m^2$)
- Low propagation loss (~0.2 dB/cm)
- Low nonlinear loss
- Large elasto-optic coefficient
- Large overlap of acoustic and optical modes

B. Morrison, PhD thesis (2018)

Silicon Brillouin device

- High index and small mode area
- Relatively high propagation loss (1-2 dB/cm)
- Nonlinear loss (Two-photon and free-carrier absorption)
- Small elasto-optic coefficient (200x lower than ChG)
- Acoustic leakage (small overlap)

Silicon rib-waveguide

Vol. 2, No. 2 / February 2015 / Optica

optica

Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity

DAVID MARPAUNG,^{1,*} BLAIR MORRISON,¹ MATTIA PAGANI,¹ RAVI PANT,^{1,3} DUK-YONG CHOI,² BARRY LUTHER-DAVIES,² STEVE J. MADDEN,² AND BENJAMIN J. EGGLETON¹

Tunable notch filter

- High Q RF filter
- Ultra-high suppression
- Energy efficiency (low gain)
- Tens of GHz tuning range

Pump tailoring

- Tunable bandwidth bandpass filter (30 MHz-440 MHz)
 - Low passband ripple (< 1.9 dB) •
- 25 dB selectivity
- Achieved from approx. 44 dB • equivalent gain

Choudhary et al., Opt. Letters 41 (2015)

RF-Photonic Filters via On-Chip Photonic–Phononic **Emit–Receive Operations**

Eric A. Kittlaus^(D), *Student Member, IEEE*, Prashanta Kharel^(D), Nils T. Otterstrom^(D), Zheng Wang, *Member, IEEE*, and Peter T. Rakich

H 5 MHz @ -3 dB

4.4

2803

Programmable Single-Bandpass Photonic RF Filter Based on Kerr Comb from a Microring

Xiaoxiao Xue, Yi Xuan, Hyoung-Jun Kim, Jian Wang, Daniel E. Leaird, Minghao Qi, and Andrew M. Weiner

Vision: Integrated Brillouin Processor

The way forward: hybrid/heterogeneous integration

$III/V-Si_3N_4$ hybrid integration

III/V-Si heterogeneous integration

Reflector Tunable Laser Gain Phase Silico

UCSB, JLT 2016

Hybrid silicon-chalcogenide

U. Twente/LioniX, JSTQE 2018

New direction: hybrid integration

Deposit 680nm As₂S₃ IMEC Silicon, ePIXfab shuttle service Lithography and Etching 700nm SiO₂ Cladding 85 µm 4 mm Si Taper 680nm Si Grating Coupler

New direction: hybrid integration

> 20x improvement in amplification over purely silicon device

B. Morrison et al., Optica 4(8), 847-854 (2017)

Conclusions

- Microwave photonics is promising, but requires high performance
- Nonlinear optics bring new dimension to microwave photonics
- Light sound interactions via Brillouin scattering useful for high spectral resolution processing
- Frequency combs can be versatile light sources for MWP
- Hybrid integration opens the path to all-integrated nonlinear MWP processor

Thanks

University of Sydney

- Yang Liu
- Amol Choudhary
- Blair Morrison
- Mattia Pagani
- Iman Aryanfar
- Alvaro Casas-Bedoya
- Jason Hotten
- Benjamin J. Eggleton

UPV Spain

• Jose Capmany

Lionix International

• Chris Roeloffzen

UTS

Chris Poulton

RMIT

- Arnan Mitchell
- Guanghui Ren
- Thach Nguyen

ANU

- Steve Madden
- Duk-Yong Choi
- Khu Vu