Single-Crystal Interference Coatings for Laser-Based Metrology and Manufacturing Systems

Presented by:

Thin Films Technical Group Leadership Team

https://www.osa.org/ThinFilmsTG

Chair Dr. Jue Wang Corning Incorporated USA <u>wangj3@corning.com</u>

Vice ChairSocial Media OfficerDr. Anna SytchkovaDr. Selim ElhadjENEA - Casaccia Research Centre, ItalyLawrence Livermore National Laboratory, USAanna.sytchkova@enea.itelhadj2@llnl.gov

Event Officer Dr. Xinbin Cheng Tongji University, China <u>chengxb@tongji.edu.cn</u>

Webinar Officer (Nano-Structured Based) Dr. Amirkianoosh (Kiano) Kiani UOIT, Canada <u>Amirkianoosh.kiani@uoit.ca</u>

Webinar Officer (PVD Based) Dr. Julien Lumeau Institut Fresnel, France <u>julien.lumeau@fresnel.fr</u>

Webinar Officer (ALD Based) Dr. Adriana Szeghalmi Fraunhofer IOF, Germany **Adriana.Szeghalmi@iof.fraunhofer.de**

Thin Films Technical Group at a Glance

- Focus
 - Optical thin films from fundamentals to applications
 - Our group serves over 1000 global members
- Mission
 - Connect people from academia, institutions and industries in the field
 - Bridge the fundamentals, the know-hows and the new developments
 - Promote networking and career development through continuous learning
- Find Us Here
 - OSA Technical Group Website: www.osa.org/ThinFilmsTG
 - LinkedIn: www.linkedin.com/groups/4783616

Interested in presenting your research? Have ideas for our group activities/events? Please contact us. Thank you!

Events of Thin Films Technical Group in 2019

- Optical Monitoring Systems for Optical Coatings
 12 February 2019 by Dr. Binyamin Robin
- Quality Control and Thin Film Metrology for Future Optical Components 14 May 2019 by Dr. Lars Jensen
- Meet and Greet at OIC 2019 6 June 2019 by Dr. Jue Wang

- High reflectance/transmittance measurements of laser optics with cavity ring-down (CRD) technique 24 September 2019 8:30 AM ~ 9:30 AM EDT by Prof. Bincheng Li
- Substrate-Transferable Single-Crystal Optical Coatings
 5 November 2019 9:30 AM ~ 10:30 AM EST by Dr. Garrett Cole

You may find information on upcoming webinars and access the past presentations via ondemand webinars at

https://www.osa.org/en-us/get_involved/technical_groups/technical_group_webinars/#ondemand

Today's Webinar

Single-crystal interference coatings for laser-based metrology and manufacturing systems By Garrett D. Cole

Garrett D. Cole is Co-Founder of Crystalline Mirror Solutions. He obtained his PhD in Materials from UC Santa Barbara in 2005. Since completing his doctorate, he has held different positions in academia and industry.

Dr. Cole has co-authored 2 book chapters and published more than 50 journal articles and conference proceedings in high impact factor journals.

He is an expert in micro- and nanofabrication, tunable semiconductor lasers, and cavity optomechanics

Single-crystal interference coatings for laser-based metrology and manufacturing systems

November 5, 2019

CRYSTALLINE MIRROR SOLUTIONS

www.crystallinemirrors.com

- Introduction to substrate-transferred crystalline coatings
- Microfabrication-based coating process overview
- Advantages of bonded single-crystal interference coatings
 - low elastic losses and minimal Brownian noise
 - mid-infrared optical transparency
 - high thermal conductivity

Technology	Technology Technical challenge		
<section-header><section-header></section-header></section-header>	 Clock uncertainty & stability limited by thermal noise 	Low-noise coatings will enable the world's most stable lasers	

Gravitational wave detectors

• Coating **Brownian noise** largely limits strain sensitivity

Low-noise coatings will expand the viewable universe

- Precision interferometers are now limited by Brownian noise
 - from cm-scale reference cavities to km-length GW detectors

- IBS-deposited optical coatings (Ta_2O_5/SiO_2) are now a key limitation
 - from LSC studies by Crooks, Harry, Penn, etc. Ta_2O_5 is the culprit
 - loss angle has been reduced by a factor of ~2 over the last decade
- Alternative interference coatings are now being explored
 - goal: simultaneous achievement of high optical and mechanical quality

Current amorphous coatings

Fluctuating mirror

Current amorphous coatings

• Damping leads to length perturbation: fluctuation-dissipation theorem

- off-resonant Brownian noise scales with mechanical loss in system
- Brownian noise minimized via low-mechanical-loss materials

• Damping leads to length perturbation: fluctuation-dissipation theorem

- off-resonant Brownian noise scales with mechanical loss in system
- Brownian noise minimized via low-mechanical-loss materials

- Damping leads to length perturbation: fluctuation-dissipation theorem
 - off-resonant Brownian noise scales with mechanical loss in system
 - Brownian noise minimized via low-mechanical-loss materials

- Damping leads to length perturbation: fluctuation-dissipation theorem
 - off-resonant Brownian noise scales with mechanical loss in system
 - Brownian noise minimized via low-mechanical-loss materials

- Damping leads to length perturbation: fluctuation-dissipation theorem
 - off-resonant Brownian noise scales with mechanical loss in system
 - Brownian noise minimized via low-mechanical-loss materials

- Damping leads to length perturbation: fluctuation-dissipation theorem
 - off-resonant Brownian noise scales with mechanical loss in system
 - Brownian noise minimized via low-mechanical-loss materials

- Damping leads to length perturbation: fluctuation-dissipation theorem
 - off-resonant Brownian noise scales with mechanical loss in system
 - Brownian noise minimized via low-mechanical-loss materials

Optical Coatings and Thermal Noise in Precision Measurement

CALENCE

<u>Editors</u>: *Gregory Harry* American University, Washington DC

Timothy P. Bodiya Massachusetts Institute of Technology

Riccardo DeSalvo Università degli Studi del Sannio, Italy

Covers both the theoretical foundations and also implications of thermal noise in a variety of applications from GWDs, ultra-stable laser systems, cavity optomechanics, and cavity QED experiments

State-of-the-art multilayer mirrors: ion-beam sputtered Ta_2O_5/SiO_2

- Amorphous thin films deposited via ion beam sputtering (IBS)
 - pioneered by Litton Industries in the mid-1970s for RLGs
- Phenomenal optical properties: high R, low absorption and scatter
- Flexible choice of substrates and scalable manufacturing

- First demonstrated in 1975
 - interference coatings by van der Ziel and Ilegems, Bell Labs
- Primary application: VCSELs
 - K. Iga's group (Tokyo) and Bell Labs (Jewell, et al.)
 - VCSELs consist of highreflectivity mirrors surrounding a semiconductor microcavity
 - global VCSEL market estimated to be worth \$3.6B by Q4 2020
- Lattice matching constraints limit substrate selection
 - monocrystalline multilayers require a crystalline template

Large-aperture linear VCSEL array, Aerius Photonics, LLC (FLIR Electro-Optical Components)

Lattice Matched Epitaxial Multilayers

Material	Crystal structure	Lattice const. (A)	Modulus (GPa)	Density (kg/m³)	CTE (x10 ⁻⁶ K ⁻¹)	Refractive index
GaAs	zinc blende	5.6455	85.3	5320	5.73	3.4804
AlAs	zinc blende	5.6533	83.5	3760	5.20	2.9383

Lattice Matched Epitaxial Multilayers

Material	Crystal structure	Lattice const. (A)	Modulus (GPa)	Density (kg/m³)	CTE (x10 ⁻⁶ K ⁻¹)	Refractive index
GaAs	zinc blende	5.6455	85.3	5320	5.73	3.4804
AlAs	zinc blende	5.6533	83.5	3760	5.20	2.9383

- GaAs is a commonly used material for mid and long-wave optics
 - what losses can be expected from GaAs/AlGaAs multilayers?

Anisotropy of Crystalline Coatings

Zinc blende unit cell with cubic symmetry yielding three elastic constants: c11, c12, & c44

$$c_{IJ} = \begin{bmatrix} c_{11} & c_{12} & c_{12} \\ c_{12} & c_{11} & c_{12} \\ c_{12} & c_{12} & c_{11} \\ & & & c_{44} \\ & & & & c_{44} \\ & & & & c_{14} \end{bmatrix}$$

L1107 () (100>

Current orientation is <100> (surface normal)

$$Y_{100} = c_{11} - 2\left(\frac{c_{12}^2}{c_{11} + c_{12}}\right)$$

$$Y_{110} = 4\left(\frac{c_{44}(c_{11}^2 + c_{11}c_{12} - 2c_{12}^2)}{c_{11}^2 + c_{11}c_{12} + 2c_{11}c_{44} - 2c_{12}}\right)$$

$$Y_{111} = 3\left(\frac{c_{44}(c_{11} + 2c_{12})}{c_{11} + 2c_{12} + c_{44}}\right)$$

- AlGaAs multilayer with varying Al content for index contrast
 - high index layers consist of binary GaAs thin films
 - 8% Ga incorporated in low index AlGaAs layers to slow oxidation in ambient
- Epitaxy generates DBRs with low defect density, high purity, and excellent thickness control
 - limited by lattice matching...
- Leverage transfer & direct bonding to overcome this
 - commonly employed process, e.g. for manufacturing SOI (silicon-on-insulator) wafers up to 45 cm in diameter

- AlGaAs multilayer with varying Al content for index contrast
 - high index layers consist of binary GaAs thin films
 - 8% Ga incorporated in low index AlGaAs layers to slow oxidation in ambient
- Epitaxy generates DBRs with low defect density, high purity, and excellent thickness control
 - limited by lattice matching...
- Leverage transfer & direct bonding to overcome this
 - commonly employed process, e.g. for manufacturing SOI (silicon-on-insulator) wafers up to 45 cm in diameter

- Optical cavity ringdown yields a finesse of 150,000 @ 1064 nm
 - transmission of ~5 ppm, scatter + absorption loss of 15 ppm
- Extracted quality factor matches measurements on µ-resonators
 - coating loss angle below 4×10^{-5} (potential for $<5 \times 10^{-6}$ at cryo)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, Nature Photonics (2013)

- Optical cavity ringdown yields a finesse of 150,000 @ 1064 nm
 - transmission of ~5 ppm, scatter + absorption loss of 15 ppm
- Extracted quality factor matches measurements on µ-resonators
 - coating loss angle below 4×10^{-5} (potential for $<5 \times 10^{-6}$ at cryo)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, Nature Photonics (2013)

Epitaxial multilayers on arbitrary substrates

<u>3 key advantages:</u>

ULTRAPRECISE measurements of space and time

LOWER mid-infrared absorption

HIGH RESOLUTION trace gas sensing

LOWER thermal

THERMAL MANAGEMENT in industrial lasers

- Introduction to substrate-transferred crystalline coatings
- Microfabrication-based coating process overview
- Advantages of bonded single-crystal interference coatings
 - low elastic losses and minimal Brownian noise
 - mid-infrared optical transparency
 - high thermal conductivity
Scalability of Crystalline Coatings

Physical vapor deposition can be realized on multiple substrates simultaneously

Wafer-scale batch fabrication enables the generation of many GaAs/AlGaAs mirror disks, though bonding (currently) remains a serial process

GaAs wafers (seed crystal)

Crystal growth via MBE

Microfab & bonding

- Crystalline coatings entail a unique manufacturing process
 - we purchase base GaAs wafers from an external supplier
 - epitaxial growth of a custom designed multilayer w/ MBE
 - using a proprietary process we remove and directly bond the single-crystal multilayer to a super-polished substrate

Molecular beam epitaxy

Metal organic chemical vapor deposition

- MBE enables low background doping, minimizing absorption
- Oval defects in GaAs (spitting Ga source) are a persistent problem
- C incorporation in AlGaAs is a major barrier to achieving low absorption
- An optimized MOCVD process can generate defect free films

Molecular beam epitaxy

- MBE enables low background doping, minimizing absorption
- Oval defects in GaAs (spitting Ga source) are a persistent problem

Metal organic chemical vapor deposition

- C incorporation in AlGaAs is a major barrier to achieving low absorption
- An optimized MOCVD process can generate defect free films

First Large-Area Coating Runs 2016/2017

- High reflectivity 1064 nm crystalline coatings on fused silica wafers
 - 35.5 period mirror, target transmission of 10 ppm at normal incidence
- Samples used for process evaluation and in-depth characterization
 - properties of interest include optical scatter and thickness uniformity

Substrate-Transfer Process: Step 1, Litho and Etch

Substrate-Transfer Process: Step 1, Litho and Etch

epi structure

wafer

- Contact lithography is used to define the coating geometry
 - a non-selective wet etch $(H_3PO_4:H_2O_2:H_2O)$ transfers this pattern into the DBR and partially into the GaAs wafer
- A second mask is used to define a slightly larger mesa
 - the same chemistry is used to deep etch (150-250 µm) into the substrate, which is typically 675 µm thick
- Lapping is used to thin the underlying wafer to ~100 μm
 - singulated die are generated with excellent control of the lateral geometry

• Contact lithography is used to define the coating geometry

- a non-selective wet etch $(H_3PO_4:H_2O_2:H_2O)$ transfers this pattern into the DBR and partially into the GaAs wafer
- A second mask is used to define a slightly larger mesa
 - the same chemistry is used to deep etch (150-250 µm) into the substrate, which is typically 675 µm thick
- Lapping is used to thin the underlying wafer to ~100 µm
 - singulated die are generated with excellent control of the lateral geometry

- Contact lithography is used to define the coating geometry
 - a non-selective wet etch $(H_3PO_4:H_2O_2:H_2O)$ transfers this pattern into the DBR and partially into the GaAs wafer
- A second mask is used to define a slightly larger mesa
 - the same chemistry is used to deep etch (150-250 µm) into the substrate, which is typically 675 µm thick
- Lapping is used to thin the underlying wafer to ~100 μm
 - singulated die are generated with excellent control of the lateral geometry

- Contact lithography is used to define the coating geometry
 - a non-selective wet etch $(H_3PO_4:H_2O_2:H_2O)$ transfers this pattern into the DBR and partially into the GaAs wafer
- A second mask is used to define a slightly larger mesa
 - the same chemistry is used to deep etch (150-250 µm) into the substrate, which is typically 675 µm thick
- Lapping is used to thin the underlying wafer to ~100 µm
 - singulated die are generated with excellent control of the lateral geometry

- High optical performance realized with acceptable yield
 - typical crystalline coatings are 0.5-1 inch in diameter
 - maximum delivered coating diameter to date is 3" / 76.2 mm
 - we can successfully transfer epilayers onto surfaces w/ a 10-cm ROC

Laboratoire des Matériaux Avancés - Villeurbanne - France

Measurement	Coating on silica substrate	Coating on sapphire substrate
Transmission @1064 nm	6 ppm	6 ppm
Absorption @1064 nm	$\leq 0.8 \text{ ppm}$	below the noise floor
Scattering @1064 nm	9.5 ppm	6 ppm
Coating Roughness	7.7 Å RMS	1.1 Å RMS
Substrate Roughness	9.1 Å RMS	1.1 Å RMS

Marchio et al., Optics Express, vol. 26, no. 5, 6114 (2018)

Large-Area Bonding Demonstration

• LIGO-relevant bonding demo: 200-mm diam. GaAs bonded to SiO₂

- Introduction to substrate-transferred crystalline coatings
- Microfabrication-based coating process overview
- Advantages of bonded single-crystal interference coatings
 - low elastic losses and minimal Brownian noise
 - mid-infrared optical transparency
 - high thermal conductivity

- Various substrate materials and geometries possible
 - SiO₂, Si, SiC, Al₂O₃, YAG, YVO₄, diamond, etc.
 - ROC > 10 cm
 - 20 cm maximum diameter
- Ultralow Brownian noise
 - loss angle reduced 10-100 \times
- Low mid-IR optical losses
 - < 50 ppm loss to 5 μ m
- High thermal conductivity
 - ~30 Wm⁻¹K⁻¹ GaAs/AlGaAs
- Respectable LIDT values
 - ~8 J/cm² for ns pulses
 - > 50 MW/cm² CW

- Various substrate materials and geometries possible
 - SiO₂, Si, SiC, Al₂O₃, YAG, YVO₄, diamond, etc.
 - ROC > 10 cm
 - 20 cm maximum diameter
- Ultralow Brownian noise
 - loss angle reduced 10-100 ×
- Low mid-IR optical losses
 - < 50 ppm loss to 5 µm
- High thermal conductivity
 - ~30 Wm⁻¹K⁻¹ GaAs/AlGaAs
- Respectable LIDT values
 - ~8 J/cm² for ns pulses
 - > 50 MW/cm² CW

- Stabilized lasers for precision measurement and metrology
 - high-resolution spectroscopy
 - optical atomic clocks
 - frequency dissemination
 - enhanced navigation systems
 - Fractional frequency stability: $\frac{\Delta f}{f} = -\frac{\Delta L}{L} - \frac{\Delta n}{n} + \delta_{Lock}$
 - small pressure fluctuations
 - stable, low noise lock loop
 - low temp. & vibration sensitivity
- Strict path length constraints
 - $\Delta f/f \sim 10^{-16} \rightarrow \Delta L \sim 10^{-17} \text{ m} (10 \text{ cm})$

- Stabilized lasers for precision measurement and metrology
 - high-resolution spectroscopy
 - optical atomic clocks
 - frequency dissemination
 - enhanced navigation systems
 - Fractional frequency stability: $\frac{\Delta f}{f} = -\frac{\Delta L}{L} - \frac{\Delta n}{n} + \delta_{Lock}$
 - small pressure fluctuations
 - stable, low noise lock loop
 - low temp. & vibration sensitivity
- Strict path length constraints
 - $\Delta f/f \sim 10^{-16} \rightarrow \Delta L \sim 10^{-17} \text{ m} (10 \text{ cm})$

- Stabilized lasers for precision measurement and metrology
 - high-resolution spectroscopy
 - optical atomic clocks
 - frequency dissemination
 - enhanced navigation systems
- Fractional frequency stability: $\frac{\Delta f}{f} = -\frac{\Delta L}{L} - \frac{\Delta n}{n} + \frac{\delta_{Lock}}{L}$
 - small pressure fluctuations
 - stable, low noise lock loop
 - low temp. & vibration sensitivity
- Strict path length constraints
 - $\Delta f/f \sim 10^{-16} \rightarrow \Delta L \sim 10^{-17} \text{ m} (10 \text{ cm})$

- Cavity mirrors are held in 4-DOF mounts: translation and tip-tilt
 - the surface normal of a spherical mirror can be re-aligned to the cavity mode after a transverse displacement by applying a rotation
- Cavity mode is rastered across surface of mirror under test
- After each translation, automated transverse cavity mode detection adjusts the rotation of the mirror to excite the fundamental mode

Truong et al., Optics Express, vol. 27, no. 14, 19141 (2019)

Spatially-Resolved Cavity Ringdown

- Cavity mirrors are held in 4-DOF mounts: translation and tip-tilt
 - the surface normal of a spherical mirror can be re-aligned to the cavity mode after a transverse displacement by applying a rotation
- Cavity mode is rastered across surface of mirror under test
- After each translation, automated transverse cavity mode detection adjusts the rotation of the mirror to excite the fundamental mode

Truong et al., Optics Express, vol. 27, no. 14, 19141 (2019)

- Cavity mirrors are held in 4-DOF mounts: translation and tip-tilt
 - the surface normal of a spherical mirror can be re-aligned to the cavity mode after a transverse displacement by applying a rotation
- Cavity mode is rastered across surface of mirror under test
- After each translation, automated transverse cavity mode detection adjusts the rotation of the mirror to excite the fundamental mode

Truong et al., Optics Express, vol. 27, no. 14, 19141 (2019)

Spatially-Resolved Cavity Ringdown

- Encoded motors offer a few-µm accuracy and < 1 µm precision
- Accommodates 2-in diam. substrates
- Automated scans up to 8×8 mm² at 0.1 mm pitch demonstrated
- Wavelengths: 1064, 1156, 1397, 1550 nm

- Encoded motors offer a few-µm accuracy and < 1 µm precision
- Accommodates 2-in diam. substrates
- Automated scans up to 8×8 mm² at 0.1 mm pitch demonstrated
- Wavelengths: 1064, 1156, 1397, 1550 nm

Custom Optical Reference Cavities and Low-Noise Optics

- Dozens of cavities & mirrors deployed on SiO₂, Si, and Al_2O_3 subs.
- Mirror diameters of 0.5" to 2" and spacer lengths up to 30 cm
- Wavelengths from ~1000 nm to 1600 nm, RT and cryo (4-124 K)
 - excess losses < 3 ppm measured via ringdown, reflectivity > 99.999%

- Dozens of cavities & mirrors deployed on SiO₂, Si, and Al_2O_3 subs.
- Mirror diameters of 0.5" to 2" and spacer lengths up to 30 cm
- Wavelengths from ~1000 nm to 1600 nm, RT and cryo (4-124 K)
 - excess losses < 3 ppm measured via ringdown, reflectivity > 99.999%

- Various substrate materials and geometries possible
 - SiO₂, Si, SiC, Al₂O₃, YAG, YVO₄, diamond, etc.
 - ROC > 10 cm
 - 20 cm maximum diameter
- Ultralow Brownian noise
 - loss angle reduced 10-100 \times
- Low mid-IR optical losses
 - < 50 ppm loss to 5 µm
- High thermal conductivity
 - ~30 Wm⁻¹K⁻¹ GaAs/AlGaAs
- Respectable LIDT values
 - ~8 J/cm² for ns pulses
 - > 50 MW/cm² CW

Spectroscopy in the Mid-Infrared

- Cavity ring-down optics in the MIR lag behind their NIR counterparts
 - evaporated coatings show large variation in losses, typically > 100 ppm
 - there is a need for mirrors w/ enhanced repeatability and robustness
- We have fabricated prototype mirrors from 3.3 to 4.6 μm targeting methane sensing, atmospheric chem., and C isotope identification

For abs. coeff. see: W. G. Spitzer and J. M. Whelan, Physical Review 114, April 1959

single-crystal Si (SCS) substrate

- Monocrystalline mirror discs transferred to curved SCS substrates
 - based on an extension of our cryogenic Si cavity end mirrors
 - potential for optical losses below at or below 20 ppm to ~5 or 6 μm

- Monocrystalline mirror discs transferred to curved SCS substrates
 - based on an extension of our cryogenic Si cavity end mirrors
 - potential for optical losses below at or below 20 ppm to ~5 or 6 μm

- First observation of trans-DOCO realized with CMS's 3.7 μm mirrors
- Reaction rates for the formation of DOCO
 - important for CO_2 / CO abundance in atmosphere
 - heat release mechanism in combustion processes

B.J. Bjork, et al., Science 354, 444 (2016)

- Slight discrepancy between CDL and NIST data (L = 175 / 150 ppm resp.)
 - likely driven by difference in cavity length and thus spot size
- Direct absorption and trans. to be re-examined, currently 16 < A < 46 ppm

- Orientation-dependent absorption observed for linear polarization
- Investigations underway to determine the underlying cause
 - intrinsic or strain induced variation in band structure

- Various substrate materials and geometries possible
 - SiO₂, Si, SiC, Al₂O₃, YAG, YVO₄, diamond, etc.
 - ROC > 10 cm
 - 20 cm maximum diameter
- Ultralow Brownian noise
 - loss angle reduced 10-100 \times
- Low mid-IR optical losses
 - < 50 ppm loss to 5 µm
- High thermal conductivity
 - ~30 Wm⁻¹K⁻¹ GaAs/AlGaAs
- Respectable LIDT values
 - ~8 J/cm² for ns pulses
 - > 50 MW/cm² CW

- Thermal conductivity ~30 × greater than standard mirror coatings
 - potential for reduced thermal lensing, wavefront distortion, etc.
- Novel applications in high power laser machining systems
 - high thermal conductivity in combination with ultralow optical losses
 - CW laser-induced damage threshold measured to be >50 MW/cm²

- GaAs-based saturable absorber mirror (SESAMs) transferred to SiC
 - large area coating with superior flatness and enhanced heat transfer
- Structure enables power scaling by avoiding modal instabilities
 - demonstrated for peak powers up to 10 MW, goal is to push to 100 MW $\,$
- Similar application: laser active media bonded to diamond

in collaboration with Ursula Keller (ETH) and Thomas Südmeyer (Neuchatel)

Direct-bonded Yb:YAG on SiC

- Pumped with 4 mm diameter spot and maximum power of 600 W
- 178 W single-mode output at 1030 nm
- M² of 1.02 (M²x) and 1.10 (M²y)
- Direct bonding achieves very low thermal resistivity
- Dual benefit would come with the crystalline coatings

Ti:sapph / single-crystal diamond

Diamond-clad Ti:sapph

SiC-clad InGaAs/GaAs

- With sufficient surface quality, direct bonding is possible
 - RMS microroughness <1 nm, surface figure at $\lambda/10$ or better
 - local ROC >10 cm, no defects > 50 µm in size
- With proper surface treatment bulk bond strength is possible
 - typical Van der Waals strength of 70 mJ/m², fusion bonding: 1 J/m^2

Substrate-transferred crystalline coatings simultaneously exhibit excellent optical and thermo-mechanical quality

Elastic loss reduction of 10-100 × compared w/ IBS films

- IBS-deposited $Ta_2O_5/SiO_{2:}$ typical Q ~3000 ($\phi_{IBS} \approx 2-4 \times 10^{-4}$)
- AlGaAs Q-values from 4×10^4 ($\phi_{RT} \approx 2 \times 10^{-5}$)
- AlGaAs cryogenic performance: Q >1 × 10⁵ ($\phi_{min} \approx 4.5 \times 10^{-6}$)
- Minimal scattering loss and optical absorption
 - absorption verified at <1 ppm, scatter loss <5 ppm
 - measured finesse $>2 \times 10^5$ at 1064, 1156, 1397, and 1550 nm
- Potential for ppm-level optical losses in the MIR
 - optical absorption <50 ppm for wavelengths out to 4.6 μ m
- Reasonably high multilayer thermal conductivity
 - in-plane value of 55-85 $Wm^{-1}K^{-1}$ through thickness ~30 $Wm^{-1}K^{-1}$

