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Our technical group focuses on all aspects related to the physics, physiology, 
and psychology of color in biological and machine vision.

Our mission is to connect the 900+ members of our community through 
technical events, webinars, networking events, and social media.

Our past activities have included:
• Special webinar on display calibration
• Vision science in times of social distancing bi-weekly coffee breaks
• Incubator meetings
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Join our online community to stay up to date on our group’s activities. 
You also can share your ideas for technical group events or let us know 
if you’re interested in presenting your research.

Ways to connect with us:
• Our website at www.optica.org/VC
• On Twitter at #OSAColorTG  
• On LinkedIn at www.linkedin.com/groups/13573604
• Email us at TGactivities@optica.org

http://www.optica.org/VC
http://www.linkedin.com/groups/13573604
mailto:TGactivities@osa.org
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Raymond L. Lee, Jr.

Until 2021, Raymond L. Lee, Jr. was a Research Professor at the U. S. Naval Academy in Annapolis, Maryland, where he also 
taught midshipmen in the departments of Mathematics, Oceanography, and Physics. Lee’s scientific research in atmospheric 
optics and radiative transfer has been supported by a series of National Science Foundation grants, from which he has published 
28 peer-reviewed technical papers in OSA journals and a scholarly book on the natural rainbow’s scientific and cultural history 
(The Rainbow Bridge: Rainbows in Art, Myth, and Science; Penn State Press; 2001). Lee has been an Optical Society member 
since 1996 and an American Meteorological Society member since 1978.
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Q:Q:  So why is the sky blue?
A:A:  Molecules are much smaller than wavelengths λ of visible light.
Succinct but not very satisfying, so use 2 different paths to reach the same answer.

(1) From William Strutt’s (later Lord Rayleigh) 1871 dimensional analysis:
  (a) scattering by a small spherical particle of radius Rp < λ/10 is ∝ its volume

V (= 4/3 πRp
3) because the particle’s constituent atoms will scatter in phase,

  (b) scattered light’s amplitude Es is ∝ V  & to Ei, the incident light’s amplitude,
  (c) energy conservation requires scattered irradiance Es

2 to decrease with
distance r as 1/r2 & so scattered amplitudes decrease as 1/r,

  (d) meaning that (Es/Ei)2 ∝ V2/r2, and for dimensional balance the
  (e) ratio must include a 1/length4 factor, with 1/λ4 being a plausible choice.

(2) Strutt’s more rigorous explanation is, in modern form:
  (a)   (a) for for light speed light speed cc, angular frequency , angular frequency ωω = 2 = 2ππcc//λλ, time , time tt, , phase angle phase angle δδ, &, &

max amplitude max amplitude EE00,,  the timethe time dependence of  dependence of EEii is  is EEii =  = EE00  sin(sin(ωωtt––δδ)), so that, so that
  (b)   (b) acceleration of scattered wavesacceleration of scattered waves  EEss  ∝∝  ∂∂22EEii//∂∂tt22 =  = ––ωω22EEii =  = ––((22ππcc//λλ))22EEii,,
  (c) or   (c) or ((EEss//EEii))22  ∝∝  11//λλ44, & so scattered skylight has a pronounced , & so scattered skylight has a pronounced blue biasblue bias..
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QQ::  Then why isn’t the clear sky always the same color everywhere?
And why isn’t that color violetviolet, not blue, if scattering is ∝ 1/λ4?
A:A:  Perception and physics.

(1)  Photopic sensitivity Vλ is ~  3500 x
greater at 480 nm than at 380 nm. 

(2)  Skylight’s source in extraterrestrial
sunlight has much less energy at violet λ.  
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(3) Skylight isn’t light of a single λ,
but a continuum of many λ that are

spectrally integrated by the visual
system into 3 broad-bandwidth signals,

thus obscuring spectral extremes.

(4)  To explain the clear sky’s 
color gradients & white horizon,
we must consider how multiple 
scattering transforms the
spectrally consistent λ-4 bias of
molecular single scattering.
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What is haze?What is haze?
     Often defined by its scattering consequencesconsequences 

rather than by its scattering constituentsconstituents 

Ile d’Anticosti,
Gulf of St. Lawrence,
6-16-2006

Consequences:Consequences:
• reduced visible-λ contrast,
   especially over long physical paths
• differs only by degree from clear-sky airlightairlight
• decreased IR albedo in upper troposphere
Constituents:Constituents:
• hygroscopic aerosols (e.g., sea salt,
     ammonium sulphate)
• tropospheric dust or smoke particles
• particles in photochemical smog
• in stratosphere, volcanic ash or sulfuric acid droplets
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Resonon Pika 
II imaging
spectrometer
& rotation
stage, both
controlled by
MacBook
Pro laptop

But first, an obligatory equipment photo ...But first, an obligatory equipment photo ...

stage

spectrometer
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  One basic measure of haze’s 
scattering & absorption effects
is aerosol optical depth τaer,λ,
measured near USNA by sun
photometers of AErosol RObotic
NETwork or AERONET.

  τaer,λ is measured at a few λ,
& then interpolated by a power-
law function τλ = τλ0(λ/λ0)-α

for Ångström coefficient α.
So τaer,λ is assumed to decrease
smoothly with λ, & haze starts
to become visible for τaer,λ > 0.2
at short wavelengths.
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USNA, h0 ~ 30°, 9-20-2010,
φrel = 90°, τaer(380 nm) = 0.0535

h0 ~ 33°, 9-13-2011,
φrel = 270°, τaer(380 nm) = 0.357
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  To quantify USNA skylight 
colors, zoom into CIE 1976 
UCS diagram, where we plot 
u´,v´ chromaticities as functions 
of view-elevation angle h.

  For scans made along sky 
meridians at azimuth relative to 
sun φrel, on the hazy day the 
resulting chromaticity curve is 
closer to Planckian (blackbody) 
locus.  Also note that (1) sky 
blueness increases with h in both 
cases, (2) small chromaticity 
“hooks” occur at low- & high-h 
ends of the hazy-sky curve, &
    (3) meridional color gamut is
    smaller on the hazy day.0.41
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  For a different pair of clear-
hazy skies, meridional u´,v´(h)
chromaticity curves are at ~ same
distance from Planckian locus
but with colors that differ visibly
in both CCTs & overall gamuts.

  In fact, only for hazy skies do
such perceptible CCT shifts
occur (i.e., large shifts ~ parallel
to Planckian locus), behavior
that makes good qualitative 
sense — but which isn’t yet 
well explained in terms of
aerosol optics.
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Marion Center, PA, 10-9-2011,
h0 ~ 30°, φrel = 90° h0 ~ 35°, φrel = 180°
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  Certainly the kind as well
as amount of aerosols affects
sky color, & that may explain
differences seen here between 
coastal & rural inland skies
observed on 2 haze-free days.

  Note that (1) green vegetation
doesn’t displace the rural Mar-
ion Center curve greenward 
relative to USNA, (2) only
the rural haze-free sky has
a high-h chromaticity hook, &
(3) despite being visibly bluer,
the rural curve is in fact closer
to the Planckian locus, which
   suggests that its blues should
   appear less saturated.

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.170 0.175 0.180 0.185 0.190 0.195 0.200

USNA (9-20-2010)
Marion Center, PA

(10-9-2011)

C
IE

 1
97

6 
v'

CIE 1976 u'

!aer(380 nm) 
= 0.0535

27000 K

coastal vs. rural clear-sky
u',v'(h) — no haze

 {h0= 30°, "rel= 90°}

Planckian
locus

h=10°

h=46°

h=1.1°

h=2.0°

6500 K

h=45°

V' > 30 km

MacAdam
JND



1414

  At a mountaintop site near the
Atlantic Ocean, extend the clear-
sky u´,v´(h) scans to the zenith:

(1) these show a pattern common
in clear skylight:  compared with 
sky colors at right angles to the 
sun (φrel = 90° or 270°), colors 
along the same sky’s antisolar
azimuth (φrel = 180°) usually are 
bluer at the same h values — i.e.,
these colors have higher CCTs,
(2) the bluest skylight occurs at
very different h for these φrel,
which several models show is due
to aerosol-dependent reddening
that occurs over a limited range
     of scattering angles Ψ,
     which in turn depend on h.
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  To determine haze’s spectral
effects at a given Ψ, calculate
its spectral transfer function
TFλ = Lλ(hazy)/Lλ(clear), a
measure useful with Lλ from
any spectrometer.  TFλ is like
direct-beam transmissivity Tλ,
but unlike Tλ, it often has large
scattering gains (i.e., TFλ > 1).

  Here we use a Photo Research
PR-650 to measure TFλ near
the horizon on two different
hazy days, normalizing their
radiances with Lλ from a single
haze-free day (9-10-2012;
its τaer(380 nm) = 0.0873).

Defining a haze spectral transfer function
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  At h = 20° & same φrel, the
bluish haze biases seen at
h = 5° are gone, replaced by
near-uniform reddening at
higher h for λ < 680 nm.  But
such reddening often only
consists of desaturating skylight 
blueness at this h & Ψ.

  Additionally, on 8-29-2012 the
smaller τaer yields a much smaller 
spectral shift (i.e., TFλ ~ 1) since
this sky is only slightly hazy.
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  At any φrel, the following TFλ 
trends seem to hold:
  (1) a slight bluish bias at 
low h disappears by h ~ 10°,
  (2) with near-linear increases 
for λ < 680 nm at higher h,  &
  (3) decreases for λ > 680 nm.

  The net result?  Tropospheric 
haze often causes an orangish
shift in clear-sky colors, except
near horizon where a purplish 
shift is likelier.  Here we show
results for φrel = 90°, but ...

~
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in the antisolar sky.  Strictly
speaking, these shifts also 
depend on h0 & aerosol type.
Obviously they will begin to 
disappear (i.e., TFλ → 1) as 
τaer decreases.

  But what might these haze-
induced shifts in clear-sky 
colors actually look like?
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TFλ(9-13-2011/9-20-2010),
φrel = 90°

TFλ(9-13-2011/9-20-2010),
φrel = 180°
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During clear civil twilights, sky colors seen from an aircraftDuring clear civil twilights, sky colors seen from an aircraft
in the lower stratosphere exhibit the same features in the lower stratosphere exhibit the same features ……

antitwilight arch {≡ ATA}
(or Belt of Venus)

dark segment
(or earth’s shadow)
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(USNA, 9-5-2002,
h0 = -2.4°)

sunsun
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2222(near Marion Center, PA on 11 Oct 2015 at h0 ~ -2.84°)

How do tropospheric aerosols (e.g., soil particles, sulfate & 
   nitrate solution droplets) affect twilight colors?
  (1)1) they add to molecular normal optical depth τmol,λ ∝ λ––  44

     a highly variable τaer,λ ∝ λ––
  
1.61.6 ± 0.4, which

  (2)(2) preferentially increases total slant τslant at smaller λ,
  (3)(3) so reddens direct sunlight & near-horizon solar sky, &
  (4)(4) perhaps may redden the antisolar sky (see ATA above).
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  Aerosol reddening of direct sunlight can make the alpenglow redder,
so might it redden antisolar twilight colors too?

alpenglow on
Cadillac Mountain, ME
7-25-2019; h0 = +1.42°sunlit

in shadow
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11-3-2013; h0 = –1.56°; τaer(380 nm) = 0.0332 {minimum}

10-20-2013; h0 = –1.77°; τaer(380 nm) = 0.103 {intermediate}

antitwilight colors at North Beach, MDantitwilight colors at North Beach, MD

11-27-2016; h0 = –1.74°; τaer(380 nm) = 0.162 {maximum}
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   Start with hyperspectral measurements of actual
antitwilight colors at the surface (z = 0 km) as f(h,τaer,λ).
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  Monte Carlo modeling (MYSTIC) suggests that any amount of tropospheric
aerosol will reduce gamut & vividness of surface-based antitwilight colors.
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  How can we make antitwilight colors even more vivid?
MYSTIC model suggests moving to the lower stratosphere.
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near Sterlin Lake, Yukon; 9 Aug 2013near Sterlin Lake, Yukon; 9 Aug 2013
zz ~ 11 km; surface unrefracted  ~ 11 km; surface unrefracted hh00 = -2.89° = -2.89°

  To measure these more vivid colors, photograph the antitwilight sky 
at z > 10 km.  Now antitwilight colors are produced by τslant «  τslant(0 km) 
because here most backscattering paths are above the troposphere.
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Next simulate twilight colors
      not along sky meridians, but
           along paths through the 
               reddest part of the Belt of
                 Venus – i.e., along tilted
                     azimuthal paths that
                       follow celestial 
                         small circles.
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MYSTIC tilted azimuthal colors
h0 = –1.56°, z = 0 km

h = 0°

φrel = 0°

h = 5.1°

φrel = 180°purely molecular case

h = 6.1°τaer(380 nm) = 0.0332 {minimum}

h = 7.8°h = 0° τaer(380 nm) = 0.162 {maximum}

φrel = 90°
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   Corresponding u´,v´(φrel,h) curves show why a purely molecular
atmosphere can give both (1) redder ATA & (2) a less-red solar sky:
a little aerosol scattering reddens the solar sky at the ATA’s expense.
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Then simulate twilight colors
      along clear-sky principal plane.
            The resulting MYSTIC 
                 meridional colors for high,
                   low, & zero aerosol
                     amounts make sense,
                       but perhaps only
                         in hindsight.        
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MYSTIC principal-plane colors
h0 = –1.56°, z = 0 km

φrel = 0° φrel = 180°purely molecular case

τaer(380 nm) = 0.0332 {minimum}

τaer(380 nm) = 0.162 {maximum}

zenithzenith
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  So while reddest ATA occurs in a molecular atmosphere, the reddest
solar sky (vs. sun’s disk) seems to require some unknown minimal τaer.
Larger τaer amounts desaturate & make bluer both the ATA & solar sky.
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  Much like twilight colors, MYSTIC twilight luminances Lv respond
consistently to aerosols added to a molecular atmosphere:  strong aerosol
forward scattering ↑ solar-sky Lv but ↓ antisolar-sky Lv.
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11-7-2021,
h0 = -1.85°

11-6-2021,
h0 = -1.83°

* *

9-2-2021,
h0 = -1.94°

*
  Finally, measure spectra & colors across the 
clear twilight sky & then analyze them as functions 
of date, φrel, & scattering angle Ψ at ~ same h0.
   All skies in this set are from a rural site near
Marion Center, PA.

approximate
sun position
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To acquire such all-sky
spectra, use another
hyperspectral camera:
a Specim IQ imaging
spectrometer fitted with
a Nikon FC-E8 fisheye.

  For typical clear-sky
twilights, scan times
range from 5 – 150 secs.
This lens & camera
combination does crop
the circular image
slightly, but careful
camera orientation 
yields cardinal-direction
φrel of 0° (solar azimuth),
90°, 180° (antisolar), &
270° in each scan.
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φrel =
90°

φrel =
180°

11-6-2021
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0.47

0.48

0.49

0.185 0.195 0.205 0.215 0.225

!rel= 90°
!rel=180°

CIE
1976 v'

MacAdam JND

  Planckian
locus

CIE 1976 u'

CCT=4665K

CCT =
9985K

h=2.7°
(at horizon)

h=90°
(zenith)

h ~ 45°

h=20.1°

h=3.4°
(at horizon)

sun elevation h0= -1.83°

11-6-2021 twilight colors
at perpendicular !rel

  Averaging twilight colors in sectors
centered on φrel = 90° & 180° ± 5° gives
visibly different meridional color trends:
although φrel = 90° crosses the Belt of
Venus near the horizon (slide 31), the
local maximum in skylight redness
seen at 180° is often absent at 90°.
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φrel =
90°

φrel =
270°

11-6-2021
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!rel= 90°

!rel=270°

CIE
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Planckian
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11-6-2021 twilight colors
at opposite !rel but at same
h0 & scattering angles "

h=20.1°

h=10.4°

h=2.7°
(at horizon)

at horizon

MacAdam
JND

h=90°
(zenith)

sun elevation h0= -1.83°

above
horizon

CCT=4665K

CCT =
9985K

  At the same Ψ (say, φrel = 90° &
270° for the same h & h0), in principle
simultaneously measured sky colors
should be the same.  Yet often they are
not because your local troposphere’s
volume of ~ 10,000 km3 (within a 20
km radius) may well have perceptible
spatial inhomogeneities in τaer.
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9-2-2021

φrel=
90°

sun h0=
-1.94°
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CIE
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CIE 1976 u'

h=2.7°
(at horizon)

h=6.6°
(at horizon)

CCT=4665K

CCT=12520Kh=
90°

Planckian
locus

h~
45°

h=
20.1° MacAdam

JND

twilight colors
at !rel= 90° on

several 2021 dates

  At φrel = 90°, 9-2-2021’s turbid, higher ΔLv sky
is (1) bluer at the zenith & (2) bluer (i.e., less red)
at the horizon.  In slide 26, twilight spectra from
the MD coastal site exhibit large shifts in antisolar
color distributions as τaer ↑.  Do similar color shifts
occur in this inland site’s solar sky?

11-6-2021
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9-2-2021

sun h0=
-1.94°

φrel
= 0°

11-6-2021

  Yes, but for this site’s solar sky (φrel = 0°), increases 
in τaer make (1) the horizon sky redder & (2) the
zenith sky bluer, as seen both in the photos & CIE 
diagram.  This is basic radiative-transfer accounting:
making the horizon sky redder & relatively
brighter makes the zenith sky bluer & darker.
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 Planckian
locush~
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(above horizon)
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Conclusions Conclusions –– haze & daytime clear-sky colors haze & daytime clear-sky colors
  1)  1)   Although scattering by tropospheric haze “merely” desaturates 
clear-sky colors, we haven’t known the details until now:
   (a)(a)  some hazy-sky u´,v´(h) curves are shifted toward Planckian locus
while others are shifted along it to lower CCTs,
   (b)(b) this colorimetric shift’s size doesn’t depend solely on τaer,
   (c)(c) at higher h, hazy antisolar skylight is relatively more bluish than
light from the same sky at φrel = 90° & 270°,
   (d)(d)  even as haze decreases skylight’s overall color gamut & ∆Lv range.
2)2)  At our measurement sites, TFλ consistently exhibits:
   (a)(a) haze-induced bluish biases near the horizon (perhaps from aerosol
multiple scattering over large slant-path τaer),
   (b)(b) reddening with broad local maxima from ~ 680-730 nm at most h, &
   (c)(c) very few local minima (i.e., aerosol absorption) from 400-700 nm.
3)3)  A 2nd-order scattering model shows skylight’s high-h hooks are caused
by (a)(a) aerosol scattering that reddens slightly as our gaze nears the sun, 
plus (b)(b) reduced multiple scattering at higher h that makes skylight bluer.
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Conclusions Conclusions ––  haze & twilight clear-sky colorshaze & twilight clear-sky colors
  1)  1)  Both modeling & measurements of antisolar twilight skyantisolar twilight sky suggest
that adding any amount of typical tropospheric aerosols to a molecular
atmosphere → an ATA that (a)(a) is less red & (b)(b) has a smaller color gamut.
  2)   2) However, small amounts of such aerosols will redden the near-horizon
solar skysolar sky → larger gamuts for (a)(a) azimuthal & (b)(b) principal-plane colors.
  3)  3)  So in radiative-transfer accounting terms, a little aerosol scattering
 reddens the solar sky at the ATA’s expense.
  4)  4)  Adding more aerosol than some unknown minimum amount will
desaturate & make bluer both the ATA & the solar sky.
  5)  5)  We come closest to seeing the molecular ATA/dark segment pair’s
vivid colors at high z, such as from a mountaintop or aircraft.
  6)6)  Modeled twilight luminance Lv(Ψ) responds plausibly to minimal
added aerosols:  their strong forward scattering increases solar-sky Lv
but decreases antisolar-sky Lv.  However, adding many more aerosols
reduces Lv local maxima on both sides of the clear twilight sky.
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And what color is the clear nighttime sky?
Blue, of course — but only if you’re very patient.

  That’s my quiz question for you — now I’m glad take yours.
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