

Nonlinear Optics Technical Group

Time-Variant Systems in Nonlinear Optics: From Frequency Conversion to Beating the Time-Bandwidth Limit

Maxim Shcherbakov, University of California, Irvine 24 September 2021

Technical Group Executive Committee

Amol Choudhary Indian Institute of Technology

Ajanta Barh ETH Zürich

Lin Xu Univ. of Southampton

Alexander Solntsev University of Technology Sydney

Donnie Keathley RLE, MIT

About the Nonlinear Optics Technical Group

Our technical group focuses on the physics of nonlinear optical materials, processes, devices, & applications.

Our mission is to connect the 4000+ members of our community through technical events, webinars, networking events, and social media.

Our past activities have included:

- Webinar on High-order Dispersion Solitons and Topological Photonics in Silicon
- Transitioning into a Career in Optics Panel Discussion at FiO 2019
- Emerging Trends in Nonlinear Optics A Review of CLEO: 2019
- Emerging Biomedical Applications of Nonlinear Optics

Connect with our Technical Group

Join our online community to stay up to date on our group's activities. You also can share your ideas for technical group events or let us know if you're interested in presenting your research.

Ways to connect with us:

- Our website at <u>www.osa.org/ol</u>
- On LinkedIn at <u>www.linkedin.com/groups/8302249</u>
- On Facebook at <u>www.facebook.com/opticanonlinearoptics</u>
- Email us at <u>TGactivities@osa.org</u>

Today's Speaker

Maxim Shcherbakov University of California, Irvine

- Assistant professor with the Department of Electrical Engineering and Computer Science at the University of California, Irvine
- Received his Ph.D. in Physics from Lomonosov Moscow State University, Russia
- Joined Cornell University as a postdoctoral associate in 2016
- Main interests are artificial optical materials and their nonlinear and quantum optics applications, deep-subwavelength lithography, and augmented and mixed reality devices

Time-Variant Systems in Nonlinear Optics: From Frequency Conversion to Beating the Time-Bandwidth Limit

Maxim Shcherbakov

Department of Electrical Engineering and Computer Science University of California, Irvine

Sponsors and collaborators:

Science Foundation

With groups of

Gennady Shvets (Cornell) Igal Brenner (Sandia) Hayk Harutyunyan (Emory) Enam Chowdhury (Ohio State)

Nonlinear Optics Technical Group Webinar September 24, 2021

UCI Samueli School of Engineering

 $\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$

UCI Samueli

School of Engineering

Negative refraction and LHM

Veselago, Pendry, Shelby, Smith, Schultz, Lezec, Shalaev, X Zhang, Soukoulis, Sihvola, Tretyakov, Fan

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$$

UCI Samueli School of Engineering

Negative refraction and LHM

Veselago, Pendry, Shelby, Smith, Schultz, Lezec, Shalaev, X Zhang, Soukoulis, Sihvola, Tretyakov, Fan

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$$

OPTICA Advancing Optics and Photonics Worldwid

UCI Samueli

School of Engineering

Negative refraction and LHM

Veselago, Pendry, Shelby, Smith, Schultz, Lezec, Shalaev, X Zhang, Soukoulis, Sihvola, Tretyakov, Fan

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$$

Polarization and chirality

Pendry, Lakhtakia, X Zhang, Zheludev, He, Wegener, Pertsch, Soukoulis, Ozbay, HT Chen, S Zhang

UCI Samueli School of Engineering

Negative refraction and LHM

Veselago, Pendry, Shelby, Smith, Schultz, Lezec, Shalaev, X Zhang, Soukoulis, Sihvola, Tretyakov, Fan

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$$

Metasurface-based devices

Capasso, Yu, Kivshar, Shalaev, Boltasseva, Brongersma, Fan, Maier, Belov, Simovski, Zentgraf, Alu, Tsai, Bozhevolnyi, Neshev, Cai, Faraon, Staude, Brener, many others

Polarization and chirality

Pendry, Lakhtakia, X Zhang, Zheludev, He, Wegener, Pertsch, Soukoulis, Ozbay, HT Chen, S Zhang

UCI Samueli School of Engineering

Negative refraction and LHM

Veselago, Pendry, Shelby, Smith, Schultz, Lezec, Shalaev, X Zhang, Soukoulis, Sihvola, Tretyakov, Fan

Polarization and chirality

Pendry, Lakhtakia, X Zhang, Zheludev, He, Wegener, Pertsch, Soukoulis, Ozbay, HT Chen, S Zhang

Metasurface-based devices

Capasso, Yu, Kivshar, Shalaev, Boltasseva, Brongersma, Fan, Maier, Belov, Simovski, Zentgraf, Alu, Tsai, Bozhevolnyi, Neshev, Cai, Faraon, Staude, Brener, many others

Metamaterials: tailored nonlinear and spatio-temporal response

 $\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$

Metamaterials: tailored nonlinear and spatio-temporal response

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \sum \chi^{(n)}(\mathbf{r}) \mathbf{E}^n(\mathbf{r}) \qquad \mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r})$$

Nonlinear metamaterials

Nonlinear metasurfaces — harmonics generation

UCI Samueli School of Engineering

 $E_{a}^{(dir)}$

Gustav Mie (1869 – 1957)

Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles Wiley Inter-Science, 1998.

|E|² maps(1) Magnetic dipolar(2) Electric dipolarImage: state sta

Khattak et al., PNAS **116**, 4000 (2019)

$$\tilde{P} = \chi^{(1)}\tilde{E}(t) + \chi^{(2)}\tilde{E}^2(t) + \chi^{(3)}\tilde{E}^3(t) + \dots$$

$$\tilde{E}(t) \propto e^{i\omega t} \qquad \propto e^{2i\omega t} \qquad \propto e^{3i\omega t}$$

10

 10^{5} 10^{4} 10^{4} 10^{4} 10^{4} 10^{2} 10^{2} 10^{2} 10^{2} 10^{2} 1.5 2 2.5 3 Photon energy (eV)

H5

Record-breaking conversion from an ultrathin material

Shcherbakov et al., *Nat. Commun.* **10**, 1345 (2019)

Metamaterials: tailored nonlinear and spatio-temporal response

UCI Samueli School of Engineering

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \sum \chi^{(n)}(\mathbf{r}) \mathbf{E}^{n}(\mathbf{r})$$

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r}) \qquad \mathbf{P}(\mathbf{r},t) = \varepsilon_0 \int d\mathbf{r}' \int dt' \,\chi(\mathbf{r},t,\mathbf{r}',t') \mathbf{E}(\mathbf{r}-\mathbf{r}',t-t')$$

Nonlinear metamaterials

Nano Letters **14**, 6488 (2014) ACS Photonics **2**, 578 (2015) Nano Letters **15**, 6985 (2015) Nano Letters **16**, 4857 (2016) Nature Communications **8**, 17 (2017) Nature Communications **10**, 1345 (2019)

Time-variant metamaterials

Nature Communications **10**, 1345 (2019) Optica (Memorandum) **6**, 1441 (2019) Physical Review A **100**, 063847 (2019) Nano Letters **20**, 7052 (2020) APL Materials **9**, 060701 (2021)

4th Generation (2015-future): Dynamic Metamaterials – SPACETIME Science & Technology

2nd Generation (1850-1995): Artificial Dielectrics – Electromagnetics Engineering

3rd Generation (1995-2015): Modern Metamaterials – New Physics

1st Generation (0-1850): Ancient Composites – Empirical Fabrication

Caloz, Tretyakov, Boyd, Pendry, Engheta, Alu, Segev, Shadrivov, Huidobro, Boltasseva, Shalaev, Brongersma, Kinsey, Halevi, Khurgin, Caglayan, Faccio, Nassar, Narimanov, Monticone, Sapienza, Fleury, Rodriguez, Lurie, Ramezani, Ramaccia many others

Caloz and Deck-Leger, IEEE Trans Ant Propag 68, 1569 (2020)

Focus of this talk: Aperiodic modulation in resonators

Time-variant semiconductor metasurfaces. Outline

- Frequency conversion
- Breaking the time-bandwidth limit
- Discussion: Time-variant ∈ nonlinear?
- Conclusion

Time-variant semiconductor metasurfaces. Outline

• Frequency conversion

- Breaking the time-bandwidth limit
- Discussion: Time-variant ∈ nonlinear?
- Conclusion

Time-variant metasurfaces – how to?

+ InGaAs photodiode

Shcherbakov et al., Nat. Commun. 8, 17 (2017)

UCI Samueli

School of Engineering

< 0 ps

6 ps

UCI Samueli School of Engineering

J. T. Mendonca, *Theory of Photon Acceleration* (Institute of Physics Publishing, Bristol and Philadelphia, 2000)

UCI Samueli School of Engineering

J. T. Mendonca, *Theory of Photon Acceleration* (Institute of Physics Publishing, Bristol and Philadelphia, 2000)

UCI Samueli School of Engineering

J. T. Mendonca, *Theory of Photon Acceleration* (Institute of Physics Publishing, Bristol and Philadelphia, 2000)

0.8

Reflectance

0.2

0

Tuning the color of light

0.9

0.8

0.7

0.6

0.5

990

970

960·

950

940

-1250

-750

Pump Probe Delay (fs)

-250 0 250

(nn) 1086 (nn)

Wavelength

Karl et al., Nano Lett. 20, 7052 (2020)

900 1000 1100 1200 1300 1400

Wavelength (nm)

950 970 990

Wavelength (nm)

$$\dot{a}(t) + i\omega_0 a(t) + [\gamma_r + \gamma_{nr}(t)]a(t) = \sqrt{\gamma_r}s^+(t),$$

$$s^-(t) = s^+(t) - \sqrt{\gamma_r}a(t)$$

UCI Samueli

Photon acceleration by dynamic plasma

UCI Samueli

School of Engineering

 $\frac{d\varepsilon(t)}{dt} < 0$ $\hbar\omega_{\rm in} < \hbar\omega_{\rm out}$

Photon acceleration by dynamic plasma

UCI Samueli School of Engineering

Theory:

[1] L. B. Felsen and G. M. Whitman, IEEE Trans. Antennas Propag. AP-18, 242 (1970).

Experiments:

[2] S. Kuo, Phys. Rev. Lett. **65**, 1000 (1990).

- [3] C. Joshi, C. Clayton, K. Marsh, D. Hopkins,
 - A. Sessler, and D. Whittum, IEEE Trans. Plasma Science 18, 814 (1990).
- [4] E. Yablonovitch, Phys. Rev. Lett. **31**, 877 (1973).
- [5] V. Mironov, A. Sergeev, E. Vanin, G. Brodin, and J. Lundberg, Phys. Rev. A 46, 6178 (1992).
- [6] B. M. Penetrante, J. N. Bardsley, W. M. Wood, C. W. Siders, and M. C. Downer, J. Opt. Soc. Am. B 9, 2032 (1992).
- [7] W. Wood, C. Siders, and M. Downer, Phys. Rev. Lett. 67, 3523 (1991).

Photon acceleration probed by THG

UCI Samueli School of Engineering

Time-variant semiconductor metasurfaces. Outline

- Frequency conversion
- Breaking the time-bandwidth limit
- Discussion: Time-variant ∈ nonlinear?
- Conclusion

Resonators and the time-bandwidth limit

UCI Samueli School of Engineering

WGM resonators: $Q \approx 10^{(8-10)}$ [Vahala, Kippenberg, Gorodetskiy, Oraevsky,...]

The time-bandwidth limit:

 $\Delta t \times \Delta f \ge 1$

(Kupfmuller principle)

On-chip cavities: $Q \approx 10^{(4-7)}$ [Lipson, Gaeta, Loncar, Crozier, Painter...]

Assume a standard Ti:Sapphire pulse: $\tau = 85 \text{ fs}, \lambda_c = 800 \text{ nm}$ FWHM bandwidth = 10 nm

Resonators with $Q \gtrsim 100$ do not take advantage of the full pulse bandwidth

Chirped pulse + time-varying cavity

$$\dot{a}(t) + i\tilde{\omega}(t)a(t) = \kappa s_{+}(t)$$
$$s_{+}(t) = s_{0}e^{-i\omega\left(1 + \frac{t\delta}{2}\right)t - \frac{t^{2}}{\tau^{2}}}$$
$$s_{-}(t) = \kappa a(t)$$

Case 1: ω_0 fixed

Case 2:
$$\omega_0 = \omega_0(0)(1 + \alpha t), \alpha = \delta$$

$$|s_+(\omega)|^2 \qquad T = 0.77$$

$$|s_-(\omega)|^2 \qquad (\omega)^2 \qquad$$

3.6

3.8

4

UCI Samueli

School of Engineering

Wavelength (μ m)

3.4

3.2

3

UCI Samueli Chirped pulse + time-varying cavity: broadband interactions

School of Engineering

THG

(arb. un.)

0.5

0.4

0.3

0.2

0.1

0

Numerical verification: *PRA* **100**, 063847 (2019)

Time-variant semiconductor metasurfaces. Outline

- Frequency conversion
- Breaking the time-bandwidth limit
- Discussion: Time-variant ∈ nonlinear?
- Conclusion

Time-variant: also, linear?

$$\mathbf{P}(\mathbf{r}) = \varepsilon_0 \chi(\mathbf{r}) \mathbf{E}(\mathbf{r}) \qquad \mathbf{P}(\mathbf{r},t) = \varepsilon_0 \int d\mathbf{r}' \int dt' \, \chi(\mathbf{r},t,\mathbf{r}',t') \mathbf{E}(\mathbf{r}-\mathbf{r}',t-t')$$

Opinion 1. *Obviously so*: polarization is linear is *E*!

Jayathurathnage et al., arxiv:2011.00262v3 (2020) – Sergey Tretyakov's Group; Lee et al., "Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces," Nature Photonics 12, 765 (2018) – Bumki Min's Group; predominantly from RF community

Opinion 2. Obviously not: χ(r, t, t') is driven by an external source, which is mixing with E and generating new frequencies! See, e.g., Raman/Brillouin sidebands. See QM-description of optical nonlinearities, including Raman, FC-induced blueshift etc. FCD + NLSE: Zhou et al., Light Sci. App. 6, e17008 (2017);

Boyd Nonlinear Optics (6.6)

Boyd Nonlinear Optics (6.6)

Nonlinear? Yes. Perturbative? No. No effective parameters — Full QM description needed!

60

80

 $\Delta = 0$

120

140

 $\Delta > 0$

100

UCI Samueli School of Engineering

UtilityEmbracing the temporal degree of freedom in metamaterialsto advance the *fundamental understanding* of light-matterinteractions and *applications* in active photonic devices

Time-variant metasurfaces. Summary UCI Samueli School of Engineering

Frequency conversion

Photon acceleration (self-conversion)

Broadband resonant light-matter interactions

Nat. Commun. **8**, 17 (2017) Nat. Commun. **10**, 1345 (2019) Phys. Rev. A **100**, 063847 (2019) APL Materials **9**, 060701 (2021)

arXiv:2008.03619 (2020) arXiv:2012.06604 (2020) *Optica* **6**, 1441 (2019)

My group @ UC Irvine EECS is hiring Email: maxim.shcherbakov@uci.edu Website: shcherbakov.eng.uci.edu

Cluster and graph states in frequency domain UCI Samueli

Fig. 5. Quantum networks based on graph states in time-variant resonators. (a) The input spectrally shaped laser pulse serves as a set of vertices V for the future graph state. The vertices are entangled in a time-variant metasurface to form a graph state with edges E. The prepared state $|G\rangle$ can serve a basis for one-way quantum computing. (b) Preliminary results: classical-optical analog of frequency entanglement with mid-infrared photons [Shcherbakov et al., Optica 2019].