From Eye to Insight

Values of Microscope Objectives

Benjamin Deissler, Leica Microsystems CMS GmbH 21.02.2017

Company History

- 1849 Carl Kellner's Optical Institute founded in Wetzlar, Germany
 1869 Ernst Leitz takes over the company and changes its name to Ernst Leitz
- 1921 Establishment of Wild Heerbrugg in Switzerland
- 1972 Partnership between Leitz Wetzlar and Wild Heerbrugg
- 1986 Cambridge Instruments acquires Reichert-Jung
- 1986 Establishment of Wild Leitz Group
- 1990 Wild Leitz and Cambridge Instruments merge to form the Leica AG
- 1998 Leica Camera, Leica Microsystems, Leica Geosystems (previously Leica Group) become three independent companies
- 2005 Danaher Corporation acquires Leica Microsystems
- 2013 Leica Biosystems becomes independent company within Danaher Corporation
- today Leica Microsystems has ~2900 employees

Customer Focus

Life Science Research

Laboratories & Universities

Major Product Groups

- Imaging solutions for life scientists researching in e.g. cancer, neuronal diseases or life-style-related diseases
- Specimen preparation for imaging at the nanoscale and correlative information between light and electron microscopy
- High throughput imaging, analysis and database management for connectomics and brain function research

Hospitals and Clinics

- Premium microscopes for neurosurgery, ophthalmology, plastic and reconstructive surgery, and ENT
- Digital imaging solutions including fluorescence, intrasurgical and handheld OCT, surgical guidance and 3D
- Routine clinic microscopes for dentistry and ENT

Industry, Material Research Centres, Scientific Institutions, Schools, Universities, Forensic Labs

- Imaging solutions for Industry & Education
- Leading ergonomic solutions for production facilities from automotive to watchmaking
- Stereo and Compound Microscopes for material and geosciences
- Forensic Microscopes
- State-of-the-art tools for quality control laboratories

Product Portfolio

HC FLUOTAR L 25x/1.00 IMM VISIR HC FLUOTAR L 25x/1.00 IMM VISIR Large portfolio of objectives

HC APO L 20x/0.95 IMM HC APO L 20x/1.00 W HC FLUOTAR L 25x/0.95 W VISIR HC IRAPO L 25x/1.00 W N PLAN L 32x/0.40 HI PLAN I 40x/0.50 N PLAN L 40x/0.55 HC PL FLUOTAR L 40x/0.60 HI PLAN 40x/0.65 N PLAN 40x/0.65 HC PL APO 40x/0.75 HC PL FLUOTAR 40x/0.75 N PLAN 40x/0.75 N PLAN EPI 40x/0.75 HC APO L U-V-I 40x/0.80 W HC PL APO 40x/0.85 HC PL APO CS2 40x/1.10 W HC PL IRAPO 40x/1.10 W HC PL APO 40x/1.10 W ACS APO 40x/1.15 OIL HC PL APO 40x/1.25 OIL HC PL APO 40x/1.30 OIL HC PL APO CS2 40x/1.30 OIL HC PL FLUOTAR 40x/1.30 OIL N PLAN H 50x/0.50 N PLAN L 50x/0.50 HC PL FLUOTAR L 50x/0.55 N PLAN EPI 50x/0.75 HC PL FLUOTAR 50x/0.80 HC PL APO 50x/0.85 N PLAN 50x/0.85 HC PL APO 50x/0.90 N PLAN 50x/0.90 HC PL FLUOTAR L 63x/0.70 HI PLAN 63x/0.75 N PLAN 63x/0.80 HC PL FLUOTAR 63x/0.90 HC APO L U-V-I 63x/0.90 HC APO L U-V-I CS2 63x/0.90 HC PL APO CS2 63x/1.20 HC PL APO UVIS CS2 63x/1.20 HC PL FLUOTAR 63x/1.25 ACS APO 63x/1.30

HC PL APO CS2 20X/0.75

- Over 200 objective lenses
- About **100** individual optical designs

What is the value of a microscope objective?

Monetary value

True value

- Interface between specimen and imaging system
- Basically, only an appropriate objective enables the experiment
- Can be quantified by a number of values
 - Magnification / field size, field correction / OFN numerical aperture
 - Free working distance, chromatic correction range, transmittance, ...
 - Increasing most of these numbers also increases the monetary value

What is the value of a microscope objective?

Primary features:

- Field size (Magnification, OFN)
- Resolution (Numerical aperture)
- Chromatic correction

Secondary features:

- Free working distance
- Correction collar
- Transmittance

Customer demands

Example: HCX APO L 20x/1.00 W

- Live cell imaging, investigate functional dependencies
 - large field of view: 1.25 mm (eyepieces), 0.95 mm (on camera)
 - large numerical aperture → Airy radius: 333 nm
 → large pupil size (20 mm)
- Sample in aqueous solution held in dishes
 - electrophysiology \rightarrow ceramic front lens mount
 - large free working distance: 1.95 mm
- High signal to noise for fluorescence imaging
 - high transmittance across range 400-700 nm
 - low autofluorescence of used glasses and optical adhesives

Interface to the object

The properties of object space have a serious impact on the imaging quality and can result in loss of contrast. Especially high-NA objectives are very sensitive.

How sensitive are they?

Application tolerances

Mismatch of immersion and mounting medium

Application tolerances

Immersion temperature

The refractive index of immersion oil is very sensitive to changes in temperature.

Application tolerances

Cover glass thickness

Sensitivity to cover glass thickness in descending order: Dry, water, glycerol objectives

 \rightarrow Use objectives with correction collar.

100% 95% 90% Strehl Ratio 85% diffraction limit 80% 75% 70% 0 2 3 4 5 6 1 7 Error in cover glass thickness (µm)

NA = 1.20, water immersion

Application tolerances (summary)

- Imaging performance depends strongly on the properties of object space
- Recommendations for users
 - Use the appropriate immersion and/or mounting medium, or a multi-immersion objective
 - If the above is impossible to achieve, use a low-NA objective
 - A large working distance is not always a good performance indicator when selecting an oilimmersion objective
 - Use the highest cover glass quality: No. 1.5H (0.170mm \pm 0.005mm)
 - Use objectives with correction collar

Design tolerances

Wrong lens thickness (PL APO 63x/1.40 OIL)

Lens group tilt (PL APO 63x/1.40 OIL)

Design Challenge: high NA optics

NA = 0.75 (f/0.67) Marginal ray angle 49° 0.85 (f/0.59) 58° 0.95 (f/0.53) 72°

Design targets and implications

- Numerical aperture
 - → Resolution
 - → Light gathering power
- Free working distance
 - → Manipulation of specimen
 - → Focusing into specimen
- Field size and field performance =
 - → Size of specimen
 - → Nature of specimen
- Chromatic correction range
 - → Polychromatic imaging
 - → Fluorescence imaging
- Transmittance
 - → UV Fluorescence excitation

Design targets and implications

- Numerical aperture
 - → Resolution
 - → Light gathering power
- Free working distance
 - → Manipulation of specimen
 - → Focusing into specimen
- Field size and field performance
 - → Size of specimen
 - → Nature of specimen
- Chromatic correction range
 - → Polychromatic imaging
 - → Fluorescence imaging
- Transmittance
 - → UV Fluorescence excitation

Sustainable production process and product quality

Example: Flatness of field

- More and larger lenses
- Tighter tolerances

10.00 mm

Example: Working distance

• More and larger lenses

N PLAN 20/0.40 WD of 0.5 mm

N PLAN **L** 20/0.40 WD of 11 mm

Design targets and implications

Technical requirements:

- Up to 15 lens elements in 50 mm length
- Lens surface deviation from ideal shape less than 30 nm
- Lens thickness tolerances down to 5 µm
- Air space tolerances down to 10 µm
- Glass tolerances
 - absolute error in index of refraction 10⁻⁴
 - relative error in index of refraction 10⁻⁵
- Maximum element decenter of 3 µm
- Maximum element tilt of 1'
- Even such tight tolerances require adjustment steps in final assembly

PL APO 100x/1.40 OIL

The microscope objective production process

22

Cutting, Grinding and Polishing

- Starting material: Raw glass block
- Targets (single lens):
 - Surface deviation within tolerance
 - Lens thickness within tolerance

Cutting, Grinding and Polishing

saw

Grinding and polishing machines, occasionally finishing by hand necessary

Front lenses in high-aperture objectives

Single lens centering

- Starting material: Unmounted single lenses
- Target: Max. surface tilt: 1'
- Methods & Tools:
 - Autocollimating telescope
 - Computer-aided analysis
 - Pivot mounting system and grinding machine

Cementing

- Starting material: Unmounted single lenses (at least one centered)
- Target: Max. surface tilt: 1'
- Methods & Tools:
 - Autocollimating telescope
 - Computer-aided analysis
 - Fine-adjustment manipulation system

Mounting & Centering

- Starting material: Unmounted single lenses or cemented multiplets
- Targets:
 - Max. lateral element displacement: 3 μm
 - Max. element tilt: 1'
- Methods & Tools:
 - Autocollimation telescope
 - Computer-aided analysis
 - Pivot mounting system with integrated lathing equipment

Machinery

- Alignment lathe turning machine for fully automatic alignment and turning of the mount of mounted lenses
- Developed by third-party company in cooperation with Leica
- Mass approx. 6000 kg

Final assembly and quality control

Final assembly and adjustment of correction elements

Interferometric quality control of assembled objective with Twyman-Green interferometer

Application-specific criteria on different types of final wave front error

Summary

 Microscope objectives are large NA optical systems field angle

- User must take care to achieve best optical performance
- Manufacturing an objective consists of many detailed and specialized steps

numerical aperture

From Eye to Insight