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Type Il superlattices have been shown in theory to be
potentially better detector materials the Hg,Cd, ,Te
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The carrier generation/recombination rate in a
semiconductor is determined by total carrier lifetime
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The carrier generation/recombination rate in a
semiconductor is determined by radiative and nonradiative
(Shockley-Read-Hall, Auger) processes
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The carrier generation/recombination rate in a
semiconductor is determined by radiative and nonradiative
(Shockley-Read-Hall, Auger) processes

1 n is carrier density
Goc— . Y 7/
T Tiotg 1S tOtal (Minority) carrier lifetime
totaI]

1
T :@ Brqan diative recombination
total

SRH rate = Aqry Radiative rate =B, 4n Auger rate =Cp N

t Defect
2 __3__ 77 level /\/\




The carrier generation/recombination rate in a
semiconductor is determined by radiative and nonradiative
(Shockley-Read-Hall, Auger) processes

1 n is carrier density
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7 ASRH b4 Bradn 57 CAugern2

Trotal superla_ttices o) pro_mising in_
theory is the possibility of using
bandstructure engineering to
suppress Auger recombination.
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What holds InAs/GaSb superlattices back in practice is fast SRH
(defect-assisted) nonradiative recombination; in contrast, SRH
rate in Hg,Cd, ,Te is often treated as zero.

107 = A=8.9 Lm
= T=77K
~ .
- Auger theory
10° oo
- 0 e ®
= R
o \ »
T10° & \ %
= \
- | \ Hg,.Cd,Te
[~  Experimental data \
) e Ref. [24] \
10°E o Ref. [25] \\
- \
— \
10-11 L1l Lol L 11y

n (cm?)
Youngdale etal Appl Phys Lett 78, 7143 (1995)






For light emitting diodes, which operate at high carrier densities
rather than low (detectors), radiative and Auger rates are much

more |

ortant, and SRH unimportant
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Due to the favorable Auger characteristics, we have used

InAs/GaSb superlattices as the material of choice for high power
light emitting diodes

Cascaded superlattice LED (SLEDs) Mesa Diode Diagram of a (biased) tunnel junction
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Epitaxial structure fabricated into % N cascaded emission regions means each
back-emitting LED carrier can emit N photons instead of just one:

IQEN_stage = N I1QE1 _stage

L.M. Murray etal, J. Vac. Sci. Technol. B 30, 021203 (2012)
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We have grown/fabricated InAs/GaSh MWIR two-color

SLEDs independently operable at each color

28 stage device over 9 pm thick with.
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We have investigated growth of SLEDs on lattice-mismatched
GaAs substrates. Surprisingly, more light came out than those
lattice-matched GaSb.

Light out versus current at 77K~ N=4
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S. Provence etal, J. Appl. Phys. 118, 123108 (2015).



Why is it surprising that more light came out of material grown
on lattice-mismatched GaAs (metamorphic growth) than lattice-
matched GaSb (pseudomorphic growth)?
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¢ Pseudomorphic
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strained to substrate

Threading
Dislocation

UNSTRAINED

Strained Layer

Buffer
b.
B | Meta_morphic growth: < Misfit dislocations are not
epilayer isfully relaxed  necessarily contained at
through formation of misfit interface. but can thread
dislocations through epilayer creating

defect states
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H0.9 :
% Per stage internal quantum

efficiency (photons
produced / injected carrier)
calculated from measured
recombination coefficients is
similar for SLEDs on GaAs
and GaSh except at low
current injection.
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SLEDs on GaAs increase the SRH
Ination rate, but SRH does not play an
e internal quantum efficiency

% Measured external quantum
efficiency (extracted photons
/ injected carrier) is slightly
higher for SLEDs on GaAs.

¢ The difference in EQE is
attributed mainly to higher
transparency of GaAs
substrate compared to GaSh.

S. Provence etal, J. Appl. Phys. 118, 123108 (2015).
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e need for us to improve

% Light is hard to extract from
the LEDs because the high
index of refraction of the
material tends to trap light
through total internal
reflection.

% LED output could be
iIncreased 10-100x by
frustrating Snell’s Law.

 Droop in EQE is attributed to
sample heating, and power
loss to high contact layer
sheet resistance

S. Provence etal, J. Appl. Phys. 118, 123108 (2015).



Thermal scene generation: generating scenes with apparent
temperatures through high radiance LED arrays

Infrared LEDs emulate a
blackbody in the sense of
spectral radiance integrated
over the mid-infrared -
“power In a bucket” is the
description sometimes used.

Apparent temperatures of
2500 K state-of-the-art, equal
to standard incandescent
sources

Apparent temperature of
6,000 K would equal the
surface of the sun.
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E. Koerperick etal, IEEE J Quant Electron 44, 1242 (2008)
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% InAs/GaSb SLED used in LED array for
thermal scene generation

% Pixel yield greater than 95%



Conclusions

nonradiative recombination dominates over Shockley-Read Hall
nonradiative recombination in LEDs. This makes InAs/GaSb a remarkable emitter
compared to dominant detector materials such as HgCdTe or InAs/InAsSb.

¢ The unimportance of SRH in SLEDs opens the door to growth of SLEDs
metamorphically on a variety of other advantageous substrates.

% The quantum efficiency of cascaded SLEDs scales with the number of stages N,
while wallplug efficiency is technically independent of N

*» We have demonstrated SLEDs with two independently operable colors, 512 x 512
SLEDs arrays, and SLEDs apparent temperatures of 2500K.

% Thermal scene generation is composed arrays of light emitters that generate an
apparent temperature through radiance in wavelength range, or “power in a
bucket.”

¢ There are still potential major improvements in SLEDs output power



